
تــدريـــ�سالمملكة العربية السعودية الـــتــعلـيــــم وزارة قـــــررت
نفقـتـها ع��ل��ى وط��ب��ع��ه ال��ك��ت��اب ه���ذا

Secondary stage - Pathways system

Second year

The book is distributed freely and cannot be sold. 1444 - 2022 Edition

Internet of Things 1-2

Publisher: Tatweer Company for Educational Services

Published under a special agreement between Binary Logic SA and Tatweer Education Services Company
(Contract No. 0003/2022) for use only in the Kingdom of Saudi Arabia

Copyright © 2022 Binary Logic SA

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without permission in writing from the publishers.

Please note: This book contains links to websites that are not maintained by Binary Logic. Although
we make every effort to ensure these links are accurate, up-to-date and appropriate, Binary Logic
cannot take responsibility for the content of any external websites.

Trademark notice: Product or corporate names mentioned herein may be trademarks or registered
trademarks and are used only for identification and explanation without intent to infringe. Binary
Logic disclaims any affiliation, sponsorship, or endorsement by the respective trademark owners.
Tinkercad is a registered trademark of Autodesk Inc. “Python” and the Python logos are registered
trademarks of Python Software Foundation. Jupyter is a registered trademark of Project Jupyter.
CupCarbon is a registered trademark of CupCarbon. Arduino is a registered trademark of Arduino SA.

The above companies or organizations do not sponsor, authorize, or endorse this book.

The publisher has made every effort to trace all copyright holders, but if they have inadvertently
overlooked any they will be pleased to make the necessary arrangements at the first opportunity.

©Ministry of Education, 2022

L.D. no.: 1444/4675

 ISBN: 978-603-511-351-9

FB.T4EDU.COM

مواد إثرائية وداعمة على "منصة عين ا�ثرائية"

تواصل بمقترحاتك لتطوير الكتاب المدرسي

IEN.EDU.SA

Enrichment and support materials
on the “iEN Ethraia Platform”

Submit your suggestions
to enhance the textbook

FB.T4EDU.COM

مواد إثرائية وداعمة على "منصة عين ا�ثرائية"

تواصل بمقترحاتك لتطوير الكتاب المدرسي

IEN.EDU.SA

King Fahd National Library Cataloging-in-Publication Data

Ministry of Education

Internet of Things 1.2 / Secondary Education - Pathway
System Second Year / Ministry of Education - Riyadh, 2022

192p.; 210*25.5cm

ISBN: 978-603-511-351-9

1- Internet of Things	 2- Curriculum

I-Title

370 dc 1444/4675

Introduction:
The progress and development of countries is measured by the ability to invest in education, and the
extent to which their educational system responds to the requirements and changes of the generations.
In the interest of the Ministry of Education sustaining the development of its educational systems, and
in response to the vision of the Kingdom of Saudi Arabia 2030, the Ministry of education has taken
the initiative to adopt the “Secondary Education Pathways” system to bring about an effective and
comprehensive change in high school.

The secondary education pathways system provides a distinguished and modern educational model
for high school in the Kingdom of Saudi Arabia, which efficiently contributes to:

•	 Strengthening the values of belonging to our homeland “the Kingdom of Saudi Arabia” and loyalty
to its wise leadership “may God protect him” based on a pure belief supported by the tolerant
teachings of Islam.

•	 Strengthening the values of citizenship by focusing on them in school subjects and activities, in line
with the demands of sustainable development, and the development plans in the Kingdom of Saudi
Arabia that emphasize the consolidation of both values and identity, based on the teachings of
Islam and its moderation.

•	 Qualifying students in line with future specializations in universities or the required jobs; ensuring
the consistency of education outputs with the labor market requirements.

•	 Enabling students to pursue education in their preferred path at early stages, according to their
interests and abilities.

•	 Enabling students to join specific scientific and administrative disciplines related to the labor market
and future jobs.

•	 Participation of students in an enjoyable and encouraging learning environment in school based on
a constructive philosophy and applied practices within an active learning environment.

•	 Delivering students through an integrated educational journey from the primary level to the end
of the high school level and facilitating their transition process to post-general education.

•	 Providing students with technical and personal skills that help them deal with life and respond to
the requirements of their level.

•	 Expanding opportunities for graduate students through various options in addition to universities,
such as: obtaining professional certificates, joining applied faculties, and earning job diplomas.

The pathways system consists of nine semesters that are taught over three years, including a common
first year in which students receive lessons in various scientific and humanities fields, followed by two
specialized years, in which students study a general path and four specialized paths consistent with their
interests and abilities, which are: the Rightful path, Business Administration path, Computer Science
and Engineering path, Health and Life path, which makes this system the best for students in terms of:

•	 The existence of new study subjects that match the requirements of the Fourth Industrial Revolution
and development plans, and the Kingdom’s Vision 2030, which aims to develop higher-order thinking,
problem-solving, and research skills.

•	 Elective field programs that are consistent with the needs of the labor market and students› interests,
as they enable students to join a specific elective field according to a specific job skill.

•	 Scale as it ensures the achievement of students› efficiency and effectiveness, and helps them identify
their tendencies and interests, and reveal their strengths, which enhances their chances of success
in the future.

•	 Volunteer work designed specifically for students in line with the philosophy of activities in schools,
and is one of the graduation requirements; which helps to promote human values, and build society
(its development and cohesion).

4

•	 Bridging which enables students to move from one path to another according to specific
mechanisms.

•	 Proficiency classes through which skills are developed and the achievement level improved,
by providing enrichment and remedial mastery classes.

•	 The options of integrated learning and distance learning, which are built in the paths system
based on flexibility, convenience, interaction and effectiveness.

•	 The graduation project that helps students integrate theoretical experiences with applied
practices.

•	 Professional and skill certificates granted to students after completing specific tasks, and
certain tests compatible with specialized organizations.

Accordingly, the computer science and engineering path as one of the updated paths at the
secondary level contributes to achieving best practices by investing in human capital, and
transforming the student into a participating and productive individual for science and knowledge,
while providing him with the skills and experience necessary to complete his studies in fields that
meet his interests and abilities, or to join the labor market.

The Internet of Things is one of the main subjects in the course of Computer science and
Engineering Pathway, which is presented in two successive books, as it contributes to clarifying the
concepts of the Internet of Things and the technologies associated with it. These help to employ
these technologies in several areas of life, such as smart cities, education, agriculture, medicine,
and other various economic fields. This course aims to introduce the student to the importance
of the Internet of Things and its role in Industry 4.0, with the definition of policies and legislation
related to the safe and ethical use of Internet of Things technologies. It also focuses on enhancing
the skills of connecting Internet of things devices, how to send and receive data between them,
and their role in smart systems and environments. This course also includes projects and practical
exercises for what the student learns. There are also realistic exercises for the student to solve
that simulate his cognitive levels under the guidance and supervision of the teacher.

The Internet of Things book is characterized by modern engagement methods, which make
students can learn and interact with it through the various exercises and activities it provides.
This book also emphasizes important aspects of data science education and learning, which are:

•	 The connection between the content and real-life problems.

•	 Diversity of ways to display engaging content.

•	 Highlights the role of the learner in the teaching and learning processes.

•	 Attention to the contents› structure and coherence.

•	 The skill of employing appropriate techniques in different situations.

•	 �The ability to employ various methods in evaluating students in proportion to their individual
differences.

To be on pace with global developments in this field, the Internet of Things book will provide
the teacher with an integrated set of diverse educational materials that take into account the
individual differences between students, in addition to educational software and websites, which
provide students with the opportunity to employ modern technologies and practice-based
communication; This solidifies its role in the teaching and learning process.

As we present this book to our dear students, we hope it will capture their interest, meet their
requirements, and make learning this material more enjoyable and useful.

God grants success

Contents

1. �IoT Advanced Applications.. 8
Lesson 1	 IoT Application Areas. 9
		 Exercises.. 16
Lesson 2	 IoT Networking Technologies. 20
		 Exercises.. 30
Lesson 3	 Security and Privacy of IoT Systems.. 34
		 Exercises.. 40
Project	 .. 44

 �2. �IoT Programming With C++. 46
Lesson 1	 Smart Security Applications with C++. 47
		 Exercises.. 63
Lesson 2	 From Tinkercad Blocks to C++.. 68
		 Exercises.. 78
Lesson 3	 Microcontroller Programming with C++. 82
		 Exercises.. 98
Project	 .. 100

3. ��IoT messaging. 102
Lesson 1	 Smart Cities and the MQTT Protocol.. 103
		 Exercises.. 109
Lesson 2	 Designing and Programming a Smart Waste IoT Device.. 113
		 Exercises.. 129
Lesson 3	 Building a Smart Waste Management Solution.. 132
		 Exercises.. 144
Project	 .. 146

4. ��IoT Wireless Sensor Network Simulation.. . . . 148
Lesson 1	 Introduction to CupCarbon.. 149
		 Exercises.. 160
Lesson 2	 Communication in an IoT Network.. 163
		 Exercises.. 175
Lesson 3	 IoT and automated Mobile Devices.. 176
		 Exercises.. 189
Project	 .. 191

6

8

In this unit, you will learn about the implementation of IoT solutions
in the healthcare industry as well as in the agricultural sector. Also,
you will learn about IoT architectures, and you will explore different
networking protocols. Finally, you will explore the concepts of security
and privacy in IoT systems.

Learning Objectives
In this unit, you will learn to:
>	Describe how IoT technologies are used in the Internet of Healthcare

Things (IoHT).
>	 Identify different smart healthcare applications.
>	Describe how IoT technologies can improve the agriculture sector.
>	Classify the oneM2M IoT architecture layers.
>	Clarify the functionality of the IoT World Forum architecture layers.
>	 Identify the main characteristics of NFC and RFID technologies.
>	Define the technologies and the protocols that are used in Wireless

Personal Area Networks (WPANS).
>	 Identify the 5G network security challenges in IoT systems.
>	Describe the IoT privacy concerns and their possible solutions.

1. �IoT Advanced
Applications

Lesson 1

IoT Application Areas

Smart Healthcare
The implementation of IoT in the healthcare industry has a significant impact
on society. IoT devices, such as wearable sensors, provide remote health
monitoring, emergency alerts, and human well-being systems. In addition to
monitoring health metrics, health-tracking gadgets include innovative wearable
technologies that enhance the quality of life. From the observation of pediatric
patients to the diagnosis and monitoring of chronic illnesses in the elderly,
effective healthcare services can be provided for all ages.

In the previous IoT 1-1 book, you learned about the fundamental concepts behind
the Internet of Things (IoT) and how it is an integral part of emerging technologies.
You also learned some basic applications that use IoT technology. Now you will
extend your previous knowledge by learning new IoT applications.

Link to digital lesson

Figure 1.1: Monitoring health metrics

Heartbeat
sensor

Access
point

InternetΕmergency alert
monitoring

The Evolution of Healthcare
The rapid population rise creates new challenges that can be solved with smart
healthcare. Smart healthcare refers to the application of technology to improve
the quality of life. Due to the absence of digital-era knowledge among healthcare
workers, the transition to smart healthcare is slow. However, governments and
private institutions are investing in the integration of technologies to improve
the healthcare system. Traditionally, a patient would visit a doctor, a local medical
center, or a hospital when needed. Smart healthcare helps patients to handle
certain emergency circumstances independently. The focus on individual
healthcare has shifted from traditional hospital treatment to smart home care.
With the use of IoT devices, smart healthcare delivers remote health monitoring,
emergency alerts, cost-effective treatment, and the availability of medical services
regardless of location. These health monitoring devices range from fitness
trackers that measure health metrics to sophisticated wearable technologies
that collect many metrics.

9

Internet of Healthcare Things
The Internet of Healthcare Things (IoHT) is an IoT-based solution that uses IoT technologies to link
people with various healthcare services. Specialized physicians can remotely review medical reports
and records and provide recommendations without being in the same location as the patient. IoHT
consists of networked medical imaging, lab reports, and remote healthcare monitoring devices.
Medical imaging could be X-ray, MRI (Magnetic resonance imaging) scan, computerized tomography
(CT) scan, and other types of imaging. It also provides emergency services comparable to smart
ambulances or smart clinics.

Wearables
Wearables are smart objects placed on the human body. Wearable medical
devices can gather, store, process, and analyze data to provide the required
feedback and send alerts in emergency scenarios. The primary users are
patients with temporary or permanent disabilities, the elderly, and babies.
Biosensors on the patient's clothing capture data and produce a digital
electrical output that can be utilized to monitor their health indicators. A
biosensor is a small analytical instrument combined with a biological
component to recognize events. Sensors and actuators differ based on the
monitoring systems. They can collect and transmit data, such as bio-signals,
body temperature, oxygen saturation level (Pulse Oximetry), and movements,
and geographics location. There are many bio-signals generated from the
body such as: electrocardiogram (ECG), electroencephalogram (EEG), and
Electromyography (EMG). Attached sensors can monitor physiological or
biomechanical parameters, such as heart rate and muscle activity, respiration,
body temperature, blood pressure, position, motion, and acceleration. The
output of smart sensors and IoT devices is typically complex, necessitating
the application of artificial intelligence, data analytics, and other technologies
such as cloud computing.

Body Sensor Network
A Body Sensor Network (BSN) is a Wireless Sensor Network (WSN) used for
human body monitoring. Ιt is a wearable sensor node network that can
communicate with other nodes and smart objects. These sensor nodes have
computing, storage, wireless transmission, and sensing capabilities. As shown
in figure 1.2, a blood flow sensor sends a patient's blood flow data to a smart
device. This device is connected to the Internet and sends these data to the
Smart Hospital. Even though BSN-based systems have a wide variety of
applications, they can be used for continuous and non-invasive monitoring
of vital signs, as tiny wireless sensors are placed on the skin and, in some
cases, embedded in the clothing. This facilitates early disease identification
and diagnosis. Typically, these sensors detect data on human body movement,
body temperature, heart rate, skin conductance, and muscle functions.

Access point DeviceInternetSmart Hospital
Figure 1.2: Body Sensor Networks connected to IoHT networks

Electroencephalogram (EEG)

An electroencephalogram
(EEG) is a diagnostic tool to
identify brain electrical
activity abnormalities.

Blood flow sensor

10

Figure 1.5: Electrocardiogram
monitoring

Smart Healthcare Applications

Blood pressure monitoring
Variations in the typical rate at which the heart pumps blood are associated with
high blood pressure in humans. Hypertension, another term for high blood pressure,
is a worldwide health issue caused by elevated blood pressure in the arteries. Chronic
hypertension causes many problems, including heart failure, chronic renal disease,
and blindness. Smart watches are wearable IoT devices that besides, tracking a
user's fitness and heart rate, can monitor other metrics like blood pressure and send
the data for processing. IoT healthcare systems built on the cloud computing platform
have become increasingly popular over time, allowing patients to monitor and
control their blood pressure utilizing IoT devices.

Pain monitoring
Identifying human emotions and pain is essential for delivering quality care to patients.
Direct communication with patients or traditional means of interaction may not be
adequate. Primarily youngsters, the elderly, and those with mental illness require this
form of engagement. Expressions on the face are a behavioral indicator of pain. Since
the feeling of pain generates changes in facial expressions, they can be utilized as an
automatic technique for diagnosing human discomfort. Instead of standard self-
reporting methods, it can be used for people who cannot self-report, such as intensive
care unit patients and infants. Infants' facial expressions are frequently observed by
their parents because they convey information about their health. A solution is an
automated pain recognition system that uses physiological inputs from IoT sensors
and data analysis to evaluate different kinds of pain and emotions.

Electrocardiogram monitoring
Sensors on the skin capture electrical signals
caused by heartbeats. Electrodes are typically
positioned on the chest when an ECG is used
in clinics. However, this setup is not suitable for
everyday use at home. There are various smart
objects for remote ECG examinations, and
hospital doctors can process patient data from
these wearable devices. Such an application
can be built as a warning system to offer people
cardiac health alerts and recommendations.

Electrocardiogram (ECG)

An electrocardiogram (ECG) is
a test that measures the
heart's electrical activity to
determine whether the heart
is functioning appropriately.

Sleep monitoring
Sleep is a natural and periodic state of mental and physical rest, but many
individuals suffer from sleep disorders. There are various sleep disorders, including
insomnia, sleep apnea, and obstructive sleep apnea. Obstructive Sleep Apnea
(OSA) is a potentially fatal respiratory disease during sleep. It impairs quality of
life by producing personality and behavioral issues. Countless systems are available
for detecting OSA. One solution is wearable in-ear electroencephalography (ear-
EEG) connected to the room's IoT network. This is a continuous and unobtrusive
method of 24/7 sleep monitoring that assesses sleep quality. The captured data
is used to predict the sleep stages utilizing AI algorithms.

Figure 1.3: Blood
pressure monitoring

Figure 1.4: Pain monitoring

Figure 1.6: Sleep monitoring

11

Figure 1.7: Pathology
monitoring

Pathology monitoring
Pathology is the scientific study of the origins and effects of disease and
injury. In an EEG, this is accomplished by attaching small metal disks with
thin wires to the scalp which send signals to a computer to store the results.
EEG is frequently employed for this purpose because of its low cost and
non-invasive nature. EEG can diagnose some brain-related disorders, such
as epilepsy and stroke. Patients with these conditions require immediate
attention because any delay can be fatal. An IoT system that monitors the
patient's condition can be life-saving in such situations.

Disabled persons monitoring
Smart wheelchairs (SMW) connected to IoT systems is a new
research topic. The design of these systems consists of two
elements: a mapping service used for navigation and a client
wheelchair. SMWs incorporate 3D LIDAR for mapping their
external environs and autonomous movement without Global
Positioning System (GPS). This technology employs both a control
architecture for the motorized wheelchair and an embedded
system for monitoring critically ill patients. The embedded
system also uses the user's biometric characteristics to detect
potentially dangerous situations. The wheelchair would generate
a warning by activating the alarm upon measuring the heartbeat
and blood pressure spikes at a certain interval.

Light Detection 
And Ranging (LIDAR)

Light Detection And Ranging
(LIDAR) is a technique for
measuring distances by
pointing a laser at an item or
surface and measuring the
time required for the
reflected light to return to
the sender.

A Saudi telecommunication provider has launched the Virtual Clinic. It is used by doctors to make
remote diagnoses for their patients. These services use IoT networking systems through wearables
to help doctors collect the necessary data which is distributed to local hospitals and medical centers.

Example

Figure 1.8: Disabled persons monitoring

12

Smart Agriculture
In the previous unit, you took your first steps in smart agriculture by building a Plant Watering System.
The agricultural sector can improve and optimize most workflows by utilizing many IoT technologies. The
implementation of the IoT in today's agricultural sector has particular advantages, such as the efficient
use of resources like land, water, fertilizers, and pesticides; an improvement in profitability, sustainability,
food safety, and environmental protection; and a decrease in production costs.

Smart Agriculture Applications

Precision farming
Precision farming refers to watering plants per their location and water amount requirements. This type of
farming requires data from many sensors, such as plant location, humidity, and surface temperatures which
may be obtained largely by aerial monitoring.
Remote-controlled aircraft, often known as Unmanned Aerial Vehicles (UAVs) or drones, have gained
popularity for aerial monitoring. Over the past years, UAVs have been utilized extensively for tracking
cultivated fields and providing effective precision agriculture solutions. Using remote sensing, it is possible
to follow a variety of crop and vegetation metrics using images of varying wavelengths. Historically, remote
sensing relied heavily on satellite imagery. UAV systems have proven effective in various precision farming
applications, including pesticide, water deficit recognition, and disease identification. Numerous decisions
can be made based on the data captured by the UAV for estimating yield in order to fix the identified problem
and maximize production.

The role of UAVs is to capture data with precise spatial details.
Many sensors are used depending on the agricultural parameters
that must be monitored. UAV sensors must meet three essential
requirements: low energy consumption, light weight, and small
size. These techniques create environment maps that depict the
soil morphology, allowing for more efficient irrigation planning
for each crop. Global Positioning System (GPS) technologies are
widely utilized to assist in the localization and georeferencing
of objects captured by remote sensing. Since remote sensing
information is a rich source of environmental data, it is usually
imported into Geographic Information Systems (GISs) and
combined with other datasets.

Unmanned Aerial Vehicle (UAV)

Unmanned Aerial Vehicles (UAVs)
are aircrafts without human pilots,
crew, or passengers.

 Low energy Light weight Small size

Figure 1.9: Smart Agriculture with UAVs

Figure 1.10: UAV essential requirements

13

Table 1.1: Important types of sensors used by UAVs

Sensor Type Description

Visible Light Sensors

It can take images in various conditions, including sunny and cloudy
weather. However, the quality of the photos depends on light conditions.

Thermal Infrared
Sensors

Infrared thermal sensors measure surface temperatures. Using infrared
sensors and an optical lens, thermal cameras collect infrared energy.
Thermal imaging cameras focus and detect radiation at the same
wavelengths, transforming it into grayscale images representing heat.
Multiple thermal imaging sensors can create a colored image.

Multispectral Imaging
Sensors

Multispectral sensors collect visible wavelengths as well as wavelengths
that fall outside the visible spectrum, including near-infrared radiation
(NIR), short-wave infrared radiation (SWIR) and others. UAVs with
multispectral or hyperspectral sensors collect crop absorption of water
information. Despite their increased cost, spectral data can be quite
valuable for evaluating many biological and physical characteristics of
crops.

Precision irrigation
Precision irrigation is a micro-irrigation technique
that conserves nutrients and optimizes water
required by plants. It slowly provides plant roots
with water droplets below or above the surface.
Crop productivity is increased by adopting precision
irrigation IoT technologies. The installed sensors
identify or read the physical and chemical aspects
of the farmland, including the weather, temperature,
humidity, plant health, soil moisture, soil acidity,
and soil nutrients. The collected data are analyzed
to inform farmers of the necessary adjustments.
Data analysis assists in determining the appropriate
nutrients and their quantities, as well as the water
needed for irrigation.

Figure 1.11: Precision Irrigation application
14

Vertical farming
Vertical farming is the cultivation of plants at a vertical scale, not a horizontal one. Only a small area is
needed for a crop to thrive, and multiple types of crops can be cultivated concurrently. Using IoT technologies,
devices may be remotely handled using communication technologies such as Bluetooth, Wi-Fi, and RFID.
Vertical farming is typically meant to cultivate crops in urban environments. An indoor vertical farming
system has a perfect climate and no external environmental concerns. IoT technologies are crucial for the
farming environment and the plant health monitoring and watering.
Vertical farming necessitates the processing and analysis of vast amounts of data for crops to develop
effectively. With vertical farming, agricultural productivity can be optimized with technical assistance, such
as automating the entire process from seed to harvest in an enclosed environment.

The NEOM mega-city project in KSA is planned to be a vertical city that will utilize breakthrough technologies
to solve the problems of pollution, transportation, and food sustainability. It will consist of two structures that
are 500 meters tall, built 200 meters apart, and run in parallel for 170 kilometers. The area in between will
host the advanced vertical city. NEOM aims to create the first integrated desert food self-sufficiency system.
With scarce water availability, smart agriculture systems are needed to create self-sufficient communities.
Circular agriculture and vertical farming techniques are enhanced by IoT and AI technologies to optimize the
use of resources and enhance agricultural production.

Example

Figure 1.12: Vertical farming application

15

16

2 	 Define what the Internet of Healthcare Things is.

1

Read the sentences and tick True or False. True False

1. �IoT technologies have not enhanced the healthcare industry.

2. The Internet of Healthcare Things is an extension of the Internet of Things.

3. All wearable medical devices are constantly connected to the Internet.

4. Body sensor networks can be autonomous IoT systems.

5. �A smart wheelchair includes an embedded system which uses the user's
biometric characteristics to detect potentially dangerous situations.

6. UAVs can perform only one type of scan across an agricultural area.

7. Thermal Infrared Sensors detect radiation of radiant heat.

8. �Precision irrigation is used to optimize the usage of the resources needed
for an agricultural system.

9. Precision irrigation does not need a lot of sensors to be effective.

10. Vertical farming is used to optimize area usage.

Exercises

17

3 	 Distinguish what data types can be collected by wearable smart objects.

4 	 Describe what a Body Sensor Network is comprised of.

5 	 Analyze how AI solutions can be used for IoHT solutions for pain monitoring.

18

6 	� Describe how UAVs are used for precision farming IoT solutions.

7 	� Classify the various types of UAV sensors.

19

8 	� Describe how IoT systems enable precision irrigation applications.

9 	� Analyze how vertical farming is dependent on effective IoT solutions.

Lesson 2

IoT Networking Technologies

OneM2M Architecture 
Versus IoT World Forum Architecture
The rapid development of machine-to-machine (M2M) communications
has resulted in the creation of IoT architectures. These architectures help
accelerate the adoption of M2M applications and devices including the
Internet of Things. The oneM2M architecture and the IoT World Forum
Architecture are considered widely known IoT architectures. The oneM2M
architecture designs IoT solutions with only the devices and their applications
in mind. The IoT World Forum Architecture is used to design IoT applications
while considering technologies such as data storage, data processing,
network connectivity, and edge computing.

OneM2M Architecture
Dealing with the variety of devices, software, and access methods is one of
the biggest issues when developing an IoT architecture. By creating a
horizontal platform design, oneM2M architecture is building interoperability
standards at all levels of the Internet of Things stack.
Based on the oneM2M architecture the IoT functions are separated into
three layers: the application layer, the services layer, and the network layer.
At first look, this architecture may appear basic and relatively generic;
however, it is very rich, encourages interoperability via IT-friendly APIs, and
supports a vast array of IoT technologies.

Applications layer

The oneM2M architecture prioritizes connections between devices
and their respective applications. This domain contains application-
layer protocols and integration with business intelligence (BI) systems.

Services layer

This layer is represented as a horizontal structure across industry-
specific apps. Horizontal modules at this tier comprise the physical
network on which IoT apps operate, the underlying management
protocols, and the hardware. Examples include cellular backhaul
communications, Multiprotocol Label Switching (MPLS) networks,
Virtual Private Networks (VPNs), Software Defined Networks (SDNs),
etc. The topmost layer is the common services layer.

Machine-To-Machine (M2M)

Machine-To-Machine, or M2M,
is a term that describes any
technology that enables
networked devices to
exchange data and carry out
tasks without human
intervention.

Multiprotocol Label
Switching (MPLS)

Multiprotocol Label Switching
directs data between nodes
based on specified labels and
tags, not network addresses.

Software-Defined
Networks (SDN)

Software-Defined Network
(SDN) is a network architecture
where the network is
controlled through software-
based controllers or
Application Programming
Interfaces (APIs) instead of
specialized hardware devices.

Link to digital lesson

20

Ne
tw

or
k L

ayer

Services Layer

Applications Layer

Network layer

This is the IoT devices and endpoints' communication domain. It
consists of both the devices and the communications network that
connects different types of networks like wireless mesh networks and
point-to-multipoint systems.

Smart and non-smart gadgets frequently communicate with one another. In other cases,
machine-to-machine communication is unnecessary, and devices merely connect with usecase-
specific apps in the IoT application domain across a Field Area Network (FAN). The FAN is the
most complex component of the communications network since it is primarily responsible for
providing “last-mile” communications to end devices. The device domain also consists of the
gateway device, which provides connections to the core network and serves as the boundary
between the device and network domains.

Point-to-multipoint system

A Point-to-multipoint system
provides various pathways
from a single network node to
multiple destination nodes.

•	Home
Application

•	Automotive
Application

Applications
talk to the APIs

to communicate
to sensors

•	Communication
Technologies

•	Networks

•	Communication
Devices and Hardware

Figure 1.13: oneM2M architecture layers

21

Layers

7 �Collaboration and Processes
(Involving people and business processes)

6 �Applications
(Reporting, analysis and control)

5 �Data Abstraction
(Aggregation and access)

4 �Data Accumulation
(Storage)

3 �Edge Computing
(Data element analysis and transformation)

2 �Connectivity
(Communication and proccessing)

1 �Physical Devices and Controllers
(The "Things" in IoT)

IoT World Forum Architecture
The IoT Reference Model introduced at the IoT World Forum specifies a series of levels with control
flowing from a center point to edge layers, which consists of sensors, devices, machines, and other
intelligent end nodes. In general, data moves from the edge layers of the stack to the center.

By utilizing this reference model, we may accomplish the following:

•	 Divide the IoT challenge into subproblems.
•	 Determine the various technologies at each layer and their interrelationships.
•	 Define a system whose components can be supplied by several vendors.
•	 Define interfaces in a manner that promotes interoperability.
•	 Define a layered security paradigm that is enforced at level transition points

Layer 1: Physical Devices and Controllers Layer

The IoT Reference Model's initial layer is the physical devices and controllers
layer. This layer contains the "things" of the Internet of Things, such as the many
endpoint devices and sensors that send and receive data. These "things" can
range in size from practically tiny sensors to enormous manufacturing machinery.
Their main task is to generate data and allow control across a network.

The IoT Reference
Model is similar to the
OSI Networking Model.

Figure 1.14: IoT World Forum Architecture layers

Figure 1.15:
Devices & Controllers layer

22

Layer 2: Connectivity Layer

The role of the connectivity layer is the transfer of data in a reliable and timely
manner. This covers transmissions between Layer 1 devices and the network,
as well as transmissions between the network and Layer 3 information
processing (the edge computing layer). As you may have seen, the connection
layer comprises all networking parts of IoT and makes no distinction between
the last-mile network (the network between the sensor/endpoint and the
IoT gateway, addressed later in this chapter), the gateway network, and the
backbone network.

Layer 3: Edge Computing Layer

Edge computing is Layer 3's role. This layer focuses on data reduction and
transforming network data flows into information that is ready to be stored
and processed by higher levels. One of the fundamental ideas of this reference
model is that information processing be initiated as close to the network's
edge as is feasible and as quickly as is possible. Layer 3 also performs the
examination of data to see whether it may be filtered or aggregated before
being transferred to a higher layer. This also permits data to be reformatted
or decoded, which facilitates further processing by other systems.

Layer 4: Data Accumulation Layer

Captures and saves data so that programs may access it when necessary.
Converts event-based data to formats that can be queried by other services.

Layer 5: Data Abstraction Layer

Reconciles diverse data formats and ensures consistent semantics from varied
sources. Using virtualization, verifies that the data set is full and consolidates
data into a single location or several data stores.

Layer 6: Applications Layer

Utilizes software programs to interpret data. Applications are able to monitor,
regulate, and generate reports depending on the data analysis.

Layer 7: Collaboration and Processes Layer

Consumes and distributes application data. IoT's utility stems from the fact
that sharing and collaborating on IoT data frequently involves numerous
steps. This layer can alter company operations and offer IoT's advantages.

Figure 1.16: Connectivity layer

Figure 1.17: Edge
Computing layer

Figure 1.18:
Data Accumulation layer

Figure 1.19:
Data Abstraction layer

Figure 1.20:
Applications layer

Figure 1.21:
Collaboration & Processes layer

23

Short Range Communication Network and Protocols

RFID and NFC
Radio-Frequency Identification (RFID) and Near-Field Communication (NFC) are communication
technologies that enable the short-range connection between IoT devices and a network. RFID and
NFC are used to store and retrieve data remotely. They consist of a radio transponder, radio receiver,
and radio transmitter and use electromagnetic fields to automatically recognize and track tags attached
to smart objects. Each tag sends or receives digital data when activated by an electromagnetic
interrogation pulse from a nearby RFID or NFC reader device.
RFID enables the tracking of tools, equipment, inventories, assets, and people through tags that are
attached to them. If a tag is close to a reader, it can be read even if it is not visible. These tags can be
read in bulk, unlike barcodes which can only be read one at a time, and they can be read within a
case, carton, box, or another container.
NFC is generally used to exchange data between devices within a range of around 4 centimeters. It
is used for contactless credit card transactions, to replace digital office or hotel keys, and to simplify
the connection and setup of devices such as headphones.

The main difference between RFID and NFC is that NFC is designed for secure data exchange, making
it appropriate for financial transactions, while RFID is mainly used for applications where we need to
identify unique items wirelessly.

Wireless Personal Area Networks 
(WPANS) and Protocols
Sensors and other Internet-connected objects require a means for
transmitting and receiving data. This section discusses Personal Area
Networks (PAN) and close-range communication. In an IoT ecosystem,
sensors and actuators can communicate through copper lines or
Wireless Personal Area Networks (WPANs).

Table 1.2: RFID vs NFC

Feature RFID NFC
Usage Frequency 125kHz ~ 2.45GHz 13.56MHz

Connection Range Maximum 100m Within 10cm (short distance)

Communication One-way Communication Two-way communication

Advantage Able to recognize long distances High security

Personal Area Network (PAN)

A Personal Area Network (PAN)
is a computer network used to
connect electronic devices
within a user's workspace.

Figure 1.22: WPAN network
Internet

WPAN

Sensor

Mobile
device

24

Zigbee addresses three distinct data traffic types.

1 	 �Periodic data: The rate of periodic data delivery or transmission is
determined by the applications (for example, sensors periodically
transmitting). When an application or external stimuli happens at a
random pace, intermittent data is produced.

2 	� Intermittent data: A light switch is a nice example of intermittent data
ideal for Zigbee.

3 	� Repeated low-latency data: Zigbee assigns transmission time slots and
can have very low latency, making it suitable for computer mice and
keyboards.

Non-IP Based WPANS Protocols

Zigbee
Zigbee is a WPAN protocol based on the IEEE 802.15.4 foundation that is designed
for cost-, power-, and space-constrained commercial and residential IoT networking.
Zigbee can form networks, discover devices, secure the network, and manage the
network. Zigbee does not provide data transport services or an application execution
environment. Zigbee is essentially a self-healing mesh network.
The following table illustrates the main components of a Zigbee network.

Table 1.3: Main components of a Zigbee network

Component Description

Zigbee controller (ZC)
A highly capable device used to build and initiate network functions
on a Zigbee network, able to assign logical network addresses and
allow nodes to join or leave the mesh.

Zigbee router (ZR)
This optional component handles a portion of the mesh network by
assigning logical network addresses and allowing nodes to join or
exit the mesh.

Zigbee end device (ZED)
This is a simple straightforward endpoint device, such as a light switch
or thermostat, that has the necessary capabilities to communicate
with the coordinator.

Light switch

Mouse

Sensor

25

There are three fundamental Zigbee topologies:

Table 1.4: Zigbee topologies

Component Description

Star Topology
A ZC containing one or more ZEDs. Only extends two hops, limiting the
distance between nodes. A dependable link with a single point of failure
at the ZC is also required.

Cluster Tree topology

A multi-hop network that uses beaconing to extend coverage and range.
ZEDs are endpoints, although ZC and ZR nodes can have child nodes.
Child nodes communicate only with their parent nodes. Parent nodes
can communicate upstream or downstream with their children. A central
failure point remains a problem.

Mesh Topology

Any source device can be routed to any destination device. Utilizes tree-
based and table-based routing methods. To execute routing functions,
ZC and ZR radios must be powered at all times, draining battery life.
Routers within a specific range of each other are permitted to interact
directly. The primary benefit is that the network may expand outside
the line of sight and has redundant pathways.

Beaconing

Beaconing in networking is a
periodic digital broadcast, like
a lighthouse beacon.

ZC

ZED

ZED

ZED

ZED

ZED

ZR
ZR

ZR
ZC

ZEDZED
ZED

ZED

ZED

ZED

ZED

ZED

ZR

ZR

ZRZR

ZRZC

ZED

ZED

ZED

ZED

Star Topology

Mesh Topology

Cluster Tree Topology

Figure 1.23: Zigbee topologies

Hop

When a packet is passed from
one network segment to the
next, this is a hop.

26

Bluetooth network

In Low Energy mode (LE), a device can carry out a complete
communication utilizing only the advertising channel. Alternately,
communication may involve pair-wise bidirectional communication
and necessitate a formal connection between the devices. Devices
required to make this sort of connection will begin the formation
procedure by listening for advertising packets. In this situation,
the listener is considered an initiator. If the advertiser transmits
a connectable advertising event, the initiator may submit a
connection request using the same physical channel it received
the connectable advertising packet on.
The advertiser can then decide whether to establish a link. If a
link is established, the advertising event concludes and the
initiator is referred to as the master and the advertiser as the
slave. Bluetooth terminology refers to this connection as a piconet,
and connection events take place. The connection events between
the master and slave all occur on the same beginning channel.
After data has been transferred and the connection event has
ended, frequency hopping can be used to select a new channel
for the pair.

Bluetooth
Bluetooth is a low-power wireless communication technology widely utilized in devices ranging
from mobile phones to keyboards and gaming consoles. Bluetooth has been used extensively in
IoT deployments for some time, as the primary device for beacons, wireless sensors, asset tracking
systems, remote controls, health monitors, and alarms when operating in low energy mode (LE).

In a Bluetooth WPAN, a number of Bluetooth events can occur. The two fundamentals are:

Advertising
Initiated by a device to warn scanning devices of the existence of a device requesting
to pair or relay a message contained in an advertising packet.

Connecting
This event describes the process of pairing a device with a host.

Figure 1.24: Bluetooth network Figure 1.25: Bluetooth connectivity

Mobile
device

Sensor

Sensor

SensorApp
App
App

27

IP Based WPANS Protocols

6LoWPAN
IP networking over low-power RF communication systems is intended for devices with limited power and
space that do not require high bandwidth networking services. The protocol is compatible with various
WPAN communications, including IEEE.802.15.4, Bluetooth, and sub-1 GHz RF technologies, as well as Power
Line Controller (PLC). The primary benefit of 6LoWPAN is that even the most basic sensors may be IP-
addressable and function as network citizens via 3G/4G/LTE/Wi-Fi/Ethernet routers. IPV6 can adequately
cover an estimated 50 billion Internet-connected devices and continue to do so long into the foreseeable
future. IPV6 is hence well-suited for IoT expansion.

6LoWPAN networks are mesh networks that exist on the outskirts of bigger networks. The topologies are
adaptable, allowing for ad hoc and disjointed networks with no ties to the Internet or other systems, or they
may be linked to the backbone or the Internet through edge routers. Various edge routers can connect
multiple 6LoWPAN networks; this is known as multi-homing. In addition, ad hoc networks can emerge
without the need for an edge router's Internet access.
Edge routers create 6LoWPAN mesh networks on the perimeters of larger, conventional networks. They can
also facilitate IPV6-to-IPV4 swaps if necessary. Datagrams are handled similarly to an IP network, which
offers some advantages over proprietary protocols. All nodes inside a 6LoWPAN network share the IPv6
prefix established by the edge router. Throughout the Network Discovery (ND) phase, nodes will register
with the edge routers.
ND governs the interaction between hosts and routers in the local 6LoWPAN mesh. Multi-homing enables
numerous 6LoWPAN edge routers to operate a network; for instance, when failover or fault tolerance
requires various media (4G and Wi-Fi).

Thread
Thread is an IoT networking protocol based on IPV6
(6LoWPAN). Its primary objective is home automation and
home networking. Thread is IP-addressable and is based
on the IEEE 802.15.4 protocol and 6LoWPAN. It shares
similarities with Zigbee and other 802.15.4 variations, but
differs significantly in that it is IP-addressable. This IP
protocol is based on the data and physical layers of 802.15.4
and the security and routing characteristics of 6LoWPAN.
Thread is also mesh-based, making it a viable option for
residential lighting systems with up to 250 devices per mesh.
The advantage of Thread is that by providing IP addressability
in very small sensors and home automation systems, one
may reduce power consumption because the protocol does
not require application state persistence at the network
layer. This also means that the edge router hosting a Thread
mesh network does not need to handle application layer
protocols, hence reducing its power and processing
requirements. Being IPV6 compatible and having all
communications encrypted using the Advanced Encryption
Standard (AES), it is naturally secure.

Figure 1.26: WPAN networks
28

Long Range Communication Networks and Protocols
Wireless Personal Area Networks (WPAN) and Wireless Local Area Networks (WLAN) link sensors to a
local network, but not necessarily to the Internet or other systems. The IoT ecosphere will encompass
sensors, actuators, cameras, smart-embedded gadgets, vehicles, and robots at the most remote locations.
Long-term, we must deal with the Wide Area Network (WAN).

LoRaWAN
Low-Power Wide-Area (LPWA) wireless technologies are ideally
suited for long-range and battery-powered endpoints. Frequently,
LoRaWAN topology is referred to as "star of stars" topology.
Endpoints exchange packets via gateways functioning as bridges,
with a central LoRaWAN network server. Endpoints communicate
directly with one or more gateways, whereas gateways connect
to the backend network via regular IP connections.
The same packets can be received and transported by many
gateways. When duplicate packets are received, the network
server is responsible for de-duplication.
Unlicensed LPWA technologies give new options for private
corporate networks, broadcasters, and mobile and non-mobile
service providers to deploy IoT infrastructures, solutions, and use
cases. The ecosystem of endpoints is expanding fast and will
undoubtedly be the deciding factor between the various LPWA
technologies and solutions, such as LoRaWAN.
Smart cities operators, broadcasters, and mobile and non-mobile
services providers are addressing the need for regional or national
IoT infrastructures, which are vital for enabling use cases for
consumer markets.

Cellular Networks (5G)
The most common kind of communication is cellular radio,
especially cellular data. Prior to the development of
cellular technology, mobile communication devices had
limited coverage, shared frequency space, and were
effectively two-way radios. Cellular Networks are excellent
at carrying data in both directions at fast speeds, but at
the expense of range and battery consumption.
5G is the next-generation IP-based communication
technology that is being developed to succeed 4G cellular
networks. Additionally, 5G enhances bandwidth, latency,
density, and user expense.
5G aims to be a single umbrella standard that encompasses
all cellular services and categories, as opposed to building
distinct services and categories for each use case.

Figure 1.27: LoRaWAN "star of stars" topology

Table 1.5: Main features of modern
	 5G networks

Features Description

Enhanced Mobile
Broadband (eMBB)

Ultra-Reliable
and Low-Latency
Communications

(URLLC)

Massive Machine
Type Communications

(mMTC)

LoRaWAN
Gateway

LoRaWAN
Node

29

30

2 	�� Classify the key layers of the oneM2M architecture for IoT systems.

1

Read the sentences and tick True or False. True False

1. The OneM2M architecture contains a data layer.

2. VPN services can be used in the services layer of an OneM2M architecture.

3. �In the IoT World Forum architecture, the Applications layer can contain
monitoring services.

4. �NFC technologies are used for long-range communication between
devices.

5. The Zigbee protocol communicates through UDP network channels.

6. �The Zigbee router is responsible for the self-healing properties of mesh
networks.

7. �The advertising event of Bluetooth communications sends data packets to
nearby devices.

8. Thread is not a mesh-based network protocol.

9. �Smart city network systems do not need Long Range Communication
Networks and Protocols.

10. The 5G network is a low-power technology.

Exercises

31

3 	 Analyze the main layers of the IoT World Forum system architecture.

4 	 Identify the main characteristics of RFID and NFC technologies.

5 	 Categorize the two main types of WPANS and provide examples for each type.

32

6 	 Identify the three key components of a Zigbee network.

7 	 Distinguish the two fundamental events occurring during a Bluetooth connection.

8 	 Describe the two main IP-based WPANS protocols.

33

9 	� Define the "star of stars" topology that LoRaWAN networks use.

10 	� Analyze how 5G technologies have evolved from 4G network technologies.

Lesson 3

Security and Privacy of IoT Systems

Security
Internet, IoT, Cloud-Based Services, Cyber-Physical Systems (CPSs),
and mobile devices define modern life in the 21st century. Technology
allows worldwide communication, which benefits society. However,
as technology evolves, cybercriminals can exploit more vulnerabilities.
IoT's impact on enterprises and business models grows. The success
of IoT for businesses depends on consumer trust. Nevertheless,
many technological products and services are rushed to market with
low concern for users' security and privacy.
Security is a critical part of the design process from the starting level
to each next level. Security policies, protocols, and standards must
be created in parallel to support any technological development.
The following table presents IoT security principles

Cyber-Physical System (CPS)

A Cyber-Physical System (CPS) is
a computer system that controls
or monitors a mechanism using
computer-based algorithms.

Table 1.6: IoT security principles

Principle Description

Trust
Allow only authorized users or services to access the device or data.

Identity

Verify the identity of individuals, services, and "things."

Privacy

Maintain the privacy of a user's device, personal information, and sensitive data.

Protection

Safeguard devices and users against physical, financial, and reputational harm.

Link to digital lesson

34

User-Centered Challenges of IoT Systems
Traditional security measures are insufficient to provide comprehensive
security to the modern connected world. Unlike many traditional
electronic devices, IoT devices interact with services on the Internet.
Many potential benefits will not be realized until people become
comfortable with these technologies. Accountability is critical for trust
between end-users and the creators of IoT systems. The complexity of
distributed data flows, inadequate consent mechanisms, and a lack of
information to the user all contribute to the need to build accountability
into the IoT.

IoT Security and Cybercrime
Internet infrastructure is a physical construct inside sovereign nations' territorial boundaries.
Nonetheless, the data flowing over this infrastructure traverses several national jurisdictions, which
remains a cyberspace-specific concern. While illegal conduct in cyberspace easily crosses geographical
borders, law enforcement does not.
The gap between legislation and technology is a major obstacle in combating cybercrime. The criminal
justice system is inherently retrospective and time-consuming, creating significant difficulties for
cyberspace regulation. The rate at which technology is integrated into our society outpaces the
creation of policy and legislation. As a result, cyberspace is controlled by a patchwork of inadequate,
underdeveloped, and competing laws.
Additionally, a consensus is difficult to achieve because each nation has its autonomous norms, beliefs,
and practices, promoting different visions for cyberspace. Various nations, for instance, promote cyber
sovereignty, arguing that national borders apply to cyberspace and that each nation should be able
to regulate how individuals and corporations use the Internet within its borders.

Figure 1.28: Αccountability in the IoT

comfortable

trust

familiar

knowledge

Figure 1.29: Ransomware malware attack and breach
35

Architectural Challenges of IoT Security
IoT requires a set of standards and a well-defined architecture with interfaces, data models, and
protocols due to the variety of devices, protocols, and services involved. Numerous attacks are possible
when IoT devices connect with a cloud service and exchange data for the first time. Various IoT device
characteristics might pose security risks and issues. Mobility, interdependence, and other similar
characteristics introduce various challenges and dangers, such as firmware vulnerabilities, storage,
processing power, network attacks, rules, and standards, that necessitate additional study. The Internet
of Things necessitates more IPv4-to-IPv6 transitioning devices, necessitating an increase in bandwidth.
The adoption of IPv6 and 5G, as well as the new generation of communication for improved speed,
generate additional risks and difficulties.

The following illustrations show how a simple architecture evolves from a simple system to an
increasingly complex one. Each layer of complexity has new vulnerabilities to the system's components.

Figure 1.30: Security vulnerabilities in IoT systems

Smart Home Smart City Smart Government

Application

WiFi Router Access point Bluetooth

Network

PC Sensors RFID

Perception

Used Technology

WiFi
Bluetooth

Zigbee
3G / 4G / 5G

IPv5/6

Cloud Computing
Software

Applications
Data Mining

Artificial
Intelligence

•	Poor access
management

•	DOS/DDOS attacks

•	Man-in-the-Middle

•	DHCP attacks •	Code injection

•	Unauthorized access

•	Spear phishing

•	Unauthorized tag access

•	Tag cloning
•	GPS spoofingRFID

WSN
GPS

Sensors

36

5G Networks and IoT Security
5G is a promising technology that has been identified as the next step in the global evolution of mobile
communication over the long term. 5G is the primary component of a networked or IoT/M2M-oriented
society. It will enable fast access to information and services. The objective of 5G is mobile connectivity
for humans as well as mobile and ubiquitous connectivity for any computing device and application that
can benefit from being connected to the Internet (IoT) and the Web (WoT—Web of Things).
Due to the development of 5g networks, it is reasonable to raise issues related to the impact of 5G on
the communication security of IoT devices. There will be a need for IoT middleware and a security
standard to implement new methods for interconnecting various cognitive networks and devices. With
a better and faster network infrastructure, there will be greater interaction between things, particularly
with the distribution of processing for cloud services, generating a high impact in terms of data security
and enabling the development of new applications that improve people's lives.
The following table illustrates the main IoT 5G security concerns.

Table 1.7: IoT 5G security concerns

Concern Description

Big Data Security

IoT systems continuously create large amounts of heterogeneous data.
In addition, data traffic demands for mobile communication in IoT
systems will expand considerably. Therefore, it is necessary to devise
an effective method for managing these large amounts of data created
by IoT systems. 5G network technologies deliver data at a substantially
lower cost per bit than previous networks. Secure protocols are needed
to properly manage and organize these massive amounts of data to
establish a comprehensive security solution for a 5G-based IoT system.

Device and application
protection

Protecting numerous devices and applications is an additional difficulty.
A crucial feature of 5G-based IoT systems is the potential to support a
far larger number of devices and applications than is now possible. The
connections of millions of additional devices and applications will
introduce new security concerns. Even with a simple cyberattack, victims
could be locked out of their homes, cars, and other linked devices.

Communication
Channels Protection

Maintain the privacy of a user's device, personal information, and
sensitive data.

37

Privacy
While online security remains a major concern and challenge in the IoT
environment, preserving privacy will also remain a significant challenge
that requires additional attention. The privacy of IoT end-users could
be jeopardized if personal data is leaked to unauthorized parties. Given
the diversity of IoT-connected devices and the inherent vulnerabilities
of hardware and software in some of them, protecting end-user privacy
may present numerous security challenges.
The vast amount of personal data captured by big data systems allows
organizations to combine different datasets, increasing the ability to
identify individuals. The capacity to mine and analyze datasets grows
in volume and variability daily. To overcome this, it is prudent to ensure
that personal data is completely anonymized. Organizations that use
anonymized data must demonstrate that they conducted a thorough
risk assessment and implemented effective security techniques. This
could include a variety of technical safeguards, such as data masking
and pseudonymization, as well as legal and organizational safeguards.

Data masking

Data masking is the process of
changing sensitive data. The data
is of no value to unauthorized
intruders but is still usable by
software and authorized personnel
for further analysis.

Differential Privacy

In differential privacy, a controlled
amount of randomness is added to
a data set without affecting
dataset accuracy. This technique is
used to prevent identifying any
personal information of individuals
in the data set.

Pseudonymization

Pseudonymization is a data
management and de-identification
process that replaces personally
identifiable information fields in a
data record with one or more
pseudonyms.

Figure 1.31: Infection of a network

Hackers can infect an IoT network and collect private data by exploiting
Universal Plug and Play (UPnP) devices. UPnP offers zero configuration,
meaning no authentication is required to connect. Hackers exploit
this feature to infect a device and then an IoT network. For example,
a mobile phone infected with a virus could connect to a thermostat in
your smart home residence through WiFi. This thermostat is connected
through UPnP to the router of your smart home. The whole IoT network
is infected with this virus, and now a data breach of private information
has occurred.

Example

Universal Plug and Play (UPnP)

Universal Plug and Play (UPnP) is a
service that enables devices on
the same local network to
automatically find and connect to
each other using standard
networking protocols. Printers,
routers, mobile devices, and smart
TVs are all types of UPnP devices.

Personal Sensitive Data
This is the full data including
personal and special data

Pseudonymous Data
IDs are replaced and
sensitive data is encrypted.

Anonymous Data
IDs removed and sensitive
data randomised/generalised

Name Ali Sami
Date of birth 24.02.84
Email asami@mail.com
User ID ASami_84
Health Type 1 diabetes

Name User 458230
Date of birth 24.02.84
Email #Sd24@!04gTu
User ID %UTopRg#Ku!1
Health Type 1 diabetes

Sex Male
Age 30-49

Health Type 1 diabetes

Virus

Mobile phone

Thermostat

Router
IoT Device

IoT Device

IoT Device

Infects Infects

Figure 1.32: Pseudonymization and data masking
38

Data protection and security are difficult in an IoT environment because at the system's core is a
communication interface between smart objects without human intervention. Given the rate of the
evolution of such systems, it is not surprising that there is little evidence to suggest that data protection
is keeping up. Even when legislators demonstrate an awareness of specific concerns in large-scale
data processing, their understanding of risk implications may be insufficient in practice.
The following table shows the current IoT privacy concerns and their possible solutions.

Table 1.8: IoT privacy concerns and their possible solutions

Privacy concerns Possible solutions

Data collection from various sources without
careful verification of relevance or accuracy. Utilize AI to validate the accuracy of acquired data.

Big data approaches enable organizations
to merge multiple datasets, which enhances
the possibility that data may identify living
individuals.

Utilize a variety of technical precautions, such as data
masking, anonymization, pseudonymization, and
aggregation, in addition to legal and organizational
safeguards.

The lack of openness in data processing and
the complexity of Big Data analytics might
contribute to mistrust.

Improve the level of openness by providing privacy
disclosures before processing any data obtained.

The difficulty of determining if new uses are
consistent with the original intent of data
collection.

An organization may collect personal data for one
purpose and subsequently analyze it for a completely
different purpose. In such a case, the users must be
informed of the change, and if necessary, further
consent must be acquired.

Any breaches will threaten users' privacy
and harm the creators' credibility, decreasing
trust and causing users to lose faith in the
organization and system.

Technical methods like encryption protocols and
blockchain technology are utilized. Access control,
video surveillance, and security records are physical
security systems that can be implemented.

Design of systems with privacy protection
in mind.

A privacy risk assessment will give an early warning
system for detecting privacy issues.

Lack of IoT-related national, regional, and
global policies and regulatory frameworks
which can also conflict with technological
development.

It is essential to bring together nations, international
organizations, industrial partners, and security and IoT
experts from industry and academia to develop
solutions to protect IoT-generated personal data.

39

40

2 	�� What is the main concern about IoT systems' rapid development and deployment?

1

Read the sentences and tick True or False. True False

1. A cyber-physical system is a system that only monitors a mechanism.

2. The IoT Protection principle includes the physical security of IoT devices.

3. Cybersecurity laws are implemented in the same way in each country

4. IPv6 and 5G technologies are completely secure.

5. M2M technologies can be created without human intervention.

6. Smart objects that are hackable can become a hazard for their users.

7. Middleware systems for communication between 5G networks are
vulnerable to cyberattacks.

8. Personal data generated by any smart object is automatically encrypted.

9. Pseudonymization techniques introduce fake data to protect the real data.

10. Blockchain technologies can help protect data in distributed IoT systems.

Exercises

41

3 	� Classify the main principles of IoT security.

4 	� Describe the main challenge of IoT security and cybercrime on the Internet. How can
this issue be addressed?

42

5 	� Distinguish various types of possible attacks on every layer of a simple IoT architecture.

6 	� What is the most significant technological security challenge created by 5G networks
in IoT systems? Present your ideas below.

43

7 	� Analyze how Big Data technologies create new privacy challenges.

8 	� Classify the current privacy concerns present in IoT systems.

In traditional healthcare, medical and biological data would be
used by the patient, their doctors, hospitals, and medical
centers. In smart healthcare, this data can be accessed from
many more points. Write down the types of devices, services,
and systems that transport, process, or store personal biological
data through smart healthcare systems.

1

Smart healthcare is one of the most important sectors
that IoT technologies improve. A variety of devices and
systems are interconnected and exchange large amounts
of data. Medical and biological data are considered the
most private personal data and must be protected by
companies and governments.

Technology companies that build IoT systems are not the only
ones responsible for protecting biological data. Governments are
accountable for providing legislation and regulation to protect
citizens from personal data misuse or breach. Search the Internet
for examples of the legislation supplied by the Kingdom of Saudi
Arabia for smart healthcare systems. Search the Internet for similar
legislation provided by another country of your choosing.

2

Project

After you have written down your notes, use them to
create a PowerPoint presentation that shows the potential
issues of security and privacy in smart healthcare and the
difference in legislation between the KSA and another
country of your choosing.

3

44

45

Now you have learned to:
>	Describe how body sensor networks are utilized in smart healthcare

applications.
>	Define the types of UAV sensors that are used in smart agriculture

IoT applications.
>	 Identify the main domains of the oneM2M architecture.
>	Distinguish the different layers of the IoT World Forum architecture.
>	 Identify the differences between NFC and RFID technologies.
>	 Identify the networking protocols that are used in Wireless Personal

Area Networks (WPANS).
>	Classify the main principles of IoT security.
>	 Identify security techniques that are established in IoT privacy.

6LoWPAN

Bluetooth

Body Sensor Network

Cyber Physical System

Data Masking

Edge Computing

Electrocardiogram

Electroencephalogram

Internet of Health
Things

IoT World Forum
Architecture

IPv6

LoRaWAN

Machine To Machine

NFC

oneM2M Architecture

Personal Area Network

Pseudonymization

RFID

Thread

UAV

Wireless Personal Area
Network

Zigbee

KEY TERMS

Wrap up

46

In this unit, you will learn about smart security applications. You will
also learn the fundamentals of the C++ programming language for the
Arduino microcontroller and how to transition from codeblocks to C++
in Tinkercad Circuits. Finally, you will build a smart security project with
an Arduino microcontroller and program it with C++.

Learning Objectives
In this unit, you will learn to:
>	 Identify the benefits and the risks of an IoT security system.
>	Name some common IoT devices used in smart security systems.
>	Recognize the common data types in C++.
>	Use operators in C++.
>	Use conditional statements in C++.
>	Use loops in C++.
>	Create a function in C++.
>	Convert the Tinkercad blocks into C++ commands.
>	Program an Arduino smart security system with C++.

2. �IoT Programming
With C++

Tools
> Autodesk Tinkercad Circuits

Lesson 1

Smart Security Applications
with C++

Smart Security
A smart security system is a way or a process of securing something using a network of
cooperating parts and tools. IoT systems can handle inspections in and around your
property and keep track of who has access to gates and doors with smart locks if they are
installed. For example, smart doorbells can recognize and interact with visitors before
unlocking the front door. Motion-activated high-definition cameras are integrated into
these gadgets. To secure your home, smart security systems warn you of any anomalies
and can set off an alarm or even contact the police.

Benefits

There are numerous reasons for implementing an intelligent home security system. IoT enables remote
monitoring and management of your home via a mobile application. Nowadays, smart security devices
employ AI to detect environmental changes and warn users. In response to the alert, the devices
initiate a specified action. People invest in smart home security systems to make their residences
more secure. These cutting-edge technologies provide you with keyless entry to your home and give
you real-time security updates.

Risks

However, the lack of legislation surrounding the usage and security of IoT devices
poses a serious threat to the deployment of IoT in a smart home. In the lack of
worldwide security standards, privacy and data security risks arise while using IoT
devices. Every Internet of Things gadget in your house collects data. If you want
to keep your lifestyle private, you must safeguard every system that gathers and
retains your personal information.

Figure 2.1: Using a smartphone to open
automatic gate machine in an office building

Link to digital lesson

47

Keeping the risks in mind, let’s explore some of the most common IoT-enabled devices
used in smart security systems.

Table 2.1: Common IoT-enabled devices

Devices Uses in smart security systems

Smart locks and alarms

Smart locks improve the security of your house and allow you to
remotely operate the front door. You may set restrictions to enable
visitors’ entry at certain periods of time. Some smart locks provide
more advanced features such as fingerprint, face-scan, or even
eye-scan authentication.

Smart cameras

A home security system is incomplete without the integration of
smart cameras. Cameras serve as the digital eyes of your home,
allowing you to watch any activity inside and outside in real-time.
There are several intelligent camera options available, including
wireless IP cameras that can be monitored from any location with
an internet connection. Surveillance video of the regions around
the entrance gates may be captured by door or gate cameras.

Fire and smoke sensors

It is crucial to install fire and smoke detectors to get notified
instantly when there is a hazardous situation in your residence.
Smart homes are often built with carbon monoxide detectors that
provide alerts when they detect dangerously high amounts of gas.
They may also activate the sprinkler system or notify the fire
department to ensure that the fire does not spread uncontrolled
and cause property loss or injuries.

Motion sensors

Motion detectors are a vital component of a smart security system.
Vibrations and inputs are recorded and analyzed in both two and
three dimensions by these systems, which then can indicate any
irregular motion. They may activate alarms to notify users of
activities inside or in the local vicinity of the house.

48

Table 2.2: The most common data types in C++

Type Identifier Example

Integers (int) 5, -4

Floating-point
numbers (float or double) 3.14 , -7.5

Characters (char) 'c'

Booleans (bool) bool flag = true;

C++
Achieving robust security is hard and thus we need powerful languages such as C++ to program interfaces.
C++ is a high level compiled programming language that has many object-oriented and functional features
on top of many low-level memory-handling capabilities. Its main characteristics are performance speed
and efficiency. C++ was designed as an extension of the C programming language.

Basic Data Types

In contrast to other programming languages, in C++ you need to specify the type of a variable before
using it. Variables need to have a type that indicates what kind of data each variable holds. The C++
program needs this information to know how much memory is needed to be allocated for these data.

Arrays

A very common data structure in C++ is the array. An array is essentially a variable that can hold multiple
values of the same type.

The syntax for declaring an array is:

datatype arrayName[arraySize];

When creating a variable there are some naming rules that you need to follow.

Valid names:
•	Can only have alphabets (Α-Z, a-z), numbers (0-9), and the underscore (_).

•	Cannot begin with a number.

•	Cannot be a keyword. For example, int is a keyword that is used to denote integers.

Variables can be declared with or without being initialized.

You can alter a type by using a type
modifier e.g. long int. The possible
combinations are:

char int double

signed

unsigned

short

long

The programmer can also define their
own types based on their needs.

49

After declaration, you cannot change the array’s type or size. You can access its elements by using
their indices.

For example, if you want to store 10 integer values you can create an array in which you will store the
values. First, you must declare the array’s type and size:

int values[10];

where int is the type of the elements stored in the array, the array’s name is “values” and its size is
10. To fill it with values the command is:

values [10] = {0,1,2,3,4,5,6,7,8,9};

To access any of its elements, you just need its index. So, the command:

int a = values[3];

declares a variable called a, which is of integer type and its value is the 4th element of the values
array (indexing in C++ starts from 0). Although you can have arrays of more than one dimension, the
most common types are one-dimensional or two-dimensional. To create a 2d array, you need to
declare the size of each dimension. For example:

char keys[4][2];

declares an array with 4 rows and 2 columns which can store values of type char. To fill the array with
your values you work as in the 1d arrays:

keys[4][2] =

{{1,2},

{3,4},

{5,6},

{7,8}

};

Here you need a pair of values for each row.

50

Basic Operators in C++
The basic types of operators are arithmetic, assignment, relational and logical.

Table 2.3: Arithmetic operators Table 2.4: Assignment operators

Table 2.5: Relational operators

Operator Operation

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo Operation
(Remainder after division)

Operator Example Equivalent to

= a = b; a = b;

+= a += b; a = a + b;

-= a -= b; a = a - b;

*= a *= b; a = a * b;

/= a /= b; a = a / b;

%= a %= b; a = a % b;

Operator Meaning Example

== Is Equal to 3 == 5 gives us false

!= Not Equal to 3 != 5 gives us true

> Greater than 3 > 5 gives us false

< Less than 3 < 5 gives us true

>= Greater Than or Equal to 3 >= 5 gives us false

<= Less Than or Equal to 3 <= 5 gives us true

Table 2.6: Logical operators

Operator Meaning Example

&& expression1 && expression2 Logical AND.
True only if all operands are true.

|| expression1 || expression2 Logical OR.
True if at least one of the operands is true.

! !expression Logical NOT.
True only if the operands is false.

In integer (int) arithmetic, "/" is used
to calculate the quotient of the division

and "%" is used for the remainder.

e.g. 5 / 2 = 2, 5 % 2 = 1

In floating-point (float, double)
arithmetic, only "/" is used for

the quotient.

e.g. 5.0 / 2.0 = 2.5

51

Comments in C++

Another basic feature every programming language supports is comments. These comments are
ignored by the compiler and are used to improve the readability of the code, making it easier for
programmers or code reviewers to understand the functionality of the code. There are two ways to
add a comment in C++ depending on whether you want the comment to span multiple lines or not.

Use /* to start a block comment and */ to end it. Block comments are also used to make a part of
the code inactive while testing the functionality of the program. For example, in the following code,
the if statement will be skipped by the compiler.

lcd.clear();

lcd.setCursor(0, 0);

lcd.print("Enter password:");

bool correctPass = true;

char buttonPressed;

/*

int index = 4;

buttonPressed = keypad.waitForKey();

if(password[index] != buttonPressed){

 correctPass = false;

}

*/

lcd.setCursor(i, 1);

lcd.print(buttonPressed);

Inactive code

// this is a comment

int y = 10;

cout << y;

Inactive code

Use // for a single line of comment

52

Condition

// code

truefalse

Conditional Statements in C++
To execute certain blocks of code depending on whether a
condition is true, you can use three types of conditionals:

•	 if statements
•	 if…else statements
•	 if…else if…else statements

First, the condition in parentheses is evaluated and if its value is true then the code inside the { } is
executed. If the condition is false the code inside the { } is skipped. How if statement works:

if statement

This type of if statement is used when you want to
execute a block of code in case a condition is met.

The syntax of a simple if statement in C++ is:

if (condition) {

// body of if statement

}

Condition is true

int number = 5;

if (number > 0) {

 // code

}

// code after if

Condition is false

int number = 5;

if (number < 0) {

 // code

}

// code after if

To print a variable x in C++ use the following command

cout << x;

Printing in C++

Figure 2.2: if statement flowchart

53

// code 2 // code 1

truefalse
Condition

The syntax of an if…else statement is:

if (condition) {

// block of code 1 if condition is true

}

else {

// block of code 2 if condition is false

}

First, the condition in parentheses is evaluated and if its value is true then the code
inside the if { } is executed. If the condition is false, the code inside the else { } is executed.

How if...else statement works:

if...else statement

In this type of if…else statement, either the code block inside
the if {} will be executed and then the code inside else {} is
skipped or the if {} is skipped then the block of code inside the
else {} will be executed.

Condition is true

int number = 5;

if (number > 0) {

 // code

}

else {

 // code

}

// code after if...else

Condition is false

int number = 5;

if (number < 0) {

 // code

}

else {

 // code

}

// code after if...else

Skipped

Skipped

Figure 2.3: If...else statement flowchart

Executed

Executed

54

// code 1

// code 3 // code 2

true

true

false

false

Condition 1

Condition 2

The syntax of an if…else if…else if…else statement is:

if (condition1) {

 // code block 1

}

else if (condition2) {

 // code block 2

}

else {

 // code block 3

}

if...else if...else statement

The last type of conditional if…else if…else is used when you need to check more than one condition
or when you need 3 or more blocks of code to be executed depending on some conditions.

Figure 2.4: If...else if ... else statement flowchart

55

All conditions are false.

int number = 0;

if (number > 0) {

 // code

}

else if (number == 0) {

 // code

}

else {

 // code

}

// code after if

// outer if statement

if (condition1) {

 // statements

 // inner if statement

 if (condition2) {

 }

}

// code after if

If neither condition1 nor condition2 is True,
code block 3 will be executed.

You can also nest an if statement inside the code
block of another if statement. They don’t have to be
of the same type. For example:

Skipped

Skipped

How if...else if...else statement works:

If condition1 is True, code block 1 will be executed
and the rest of the code blocks are skipped.

1st Condition is true

int number = 2;

if (number > 0) {

 // code

}

else if (number == 0) {

 // code

}

else {

 // code

}

// code after if

Skipped

2st Condition is true.

int number = 0;

if (number > 0) {

 // code

}

else if (number == 0) {

 // code

}

else {

 // code

}

// code after if

If condition1 is False and condition2 is True, code
block 2 will be executed and code block 3 is skipped.

Skipped

Skipped

Executed

Executed

Executed

56

The syntax of a for loop is:

for (variable initialization;
 condition; increment operation) {

// loop statements;

}

Where variable initialization is executed only once
before the loop starts and it sets the starting values
of the variables that are part of the condition. In this
step, you can also declare and initialize a variable,
usually the counter used for the loop iterations, by
the condition. If the condition’s value is True, the
loop statements are executed and then the increment
operation updates the values of the initialized
variables. This continues until the condition’s value
changes to False.

Loops
In C++ you can use three types of loops:

•	 "for" loop
•	 "while" loop
•	 "do...while" loop

"for" loop

The syntax of a while loop is:

while (condition) {

// loop statements;

}
Where the loop statements are executed while the
condition evaluates to True. When the condition
becomes False the iteration stops and the loop
statements are skipped.

"while" loop

The third iteration type, do…while, is a variation
of the while loop and its syntax is:

do {

// statement execution;

} while (condition);

Its difference from the while loop is that in a do…
while loop the condition is checked after the loop
statements. This means that the code inside the body
of the loop will be executed at least one time. The
iteration stops when the condition evaluates to False.

"do...while" loop

// code
truefalse

var init

increment op

Condition

// code

truefalse
Condition

// code

truefalse
Condition

Figure 2.5: for loop flowchart

Figure 2.6: while loop flowchart

Figure 2.7: do...while loop flowchart

57

"break" and "continue" Statements

When working with loops there are two very useful statements, "break" and "continue".
They both work in every loop type.

The break statement will terminate the loop in which it is encountered.

"break" Statement

for (init; condition; update) {

 // code block 1

 if (condition to break) {

 break

 }

 // code block 2

}

 // code after loop

while (condition) {

 // code block 1

 if (condition to break) {

 break

 }

 // code block 2

}

 // code after loop

If the break statement is found inside the body of a nested loop, it terminates the inner loop.

truefalse

truefalse

// code 1

// code after loop

Condition

break
statement
condition

// code 2

Figure 2.8: break statement flowchart

58

The continue statement will skip the rest of the code inside the loop and go to the next iteration.

"continue" Statement

for (init; condition; update) {

 // code block 1

 if (condition to continue) {

 continue

 }

 // code block 2

}

 // code after loop

while (condition) {

 // code block 1

 if (condition to continue) {

 continue

 }

 // code block 2

}

 // code after loop

If the continue statement is found inside the body of a nested
loop it skips the current iteration of the inner loop.

Figure 2.9: continue statement flowchart

truefalse

truefalse

// code 1

// code after loop

Condition

// code 2

continue
statement
condition

59

An example of a very simple function that receives two integers and returns their sum is:

// function declaration

int adding (int a, int b) {

 s = a+b;

 return s

}

returnType functionName (parameter1, parameter2,...) {

 // function body

}

To create a function, you first need to declare it:

Functions in C++
Quite often in programming, there are tasks that need to be executed many times. One solution would be
to write the same lines of code every time these tasks need to be performed. A better solution is to group
these lines of code and create a function that performs these tasks. In C++ there are many standard library
functions, which are functions that are predefined and can be used by programmers. There is also the ability
for programmers to define their own functions based on their needs. These are called user-defined functions.

Every function can accept some variables as input parameters, execute some code which is enclosed in {},
and to end the function there is a return statement, which returns a value.

returnType is the type of data the
function returns to where it was called.

functionName is the name of the function.

(parameter1, parameter2, …) is the list
of input parameters if there are any.

60

To use this function in your main code you call it by its name and pass as parameters two integers:

int main () {

 int a=2;

 int b=5;

 int c;

 //calling the function and passing a, b as arguments

 c = adding(a,b);

 //cout will print the value of c

 cout << c;

 return 0;

}

As you can see, "main" is also a function that returns the value 0, hence its return type is int but
accepts no input parameters in this case which is indicated by the empty parentheses (). "main" is a
special kind of function in C++ where the main code of a program exists.

The type, number and order of arguments passed to a function must match the type of the
corresponding parameters in the function declaration.

It is possible for a function to not return any value. In that case, the returnType will be "void".

void displyNumber () {

 // code

}

Only in the main() function, the return
statement is optional and can be omitted.

Setup() and Loop() Functions
When writing code for Arduino in the Tinkercad platform, there are two functions that are called to execute
the code of the circuit. These functions are called automatically when the program starts its execution unlike
the rest of the functions that need to be called explicitly by your code.

The first function that is executed is "void setup()". It is executed only once in the beginning, and it is
responsible for setting up the various circuit parts. Things like setting the mode of each Arduino digital pin,
establishing communication with the serial terminal and more are handled in the setup() function.

After setup() has been executed, the function "void loop()" is called repeatedly as long as the system is
powered. This is the function that performs the main functionality of the circuit.

61

Classes, Objects, and Methods
In the object-oriented programming, you basically want to
perform all computations based on “objects”. An object is
the basic unit of object-oriented programming. Objects can
have properties and can perform some basic actions. For
example, a servo motor can be considered such an object.
It has some properties (name, type) and can perform some
basic actions such as reading from a digital pin, rotating its
motor by a number of degrees, etc. These actions that each
object can perform are called methods and in C++ they are
basically functions that have been declared inside the body
of an object.

Technically the properties and methods are being declared
inside the body of a class and not an object. Avoiding many
technical details, you can think of a class as a concept and
the objects as the embodiment of that concept. For example,
in a circuit simulation where there would be three servo
motors, you would first need to declare a class “Servo” and
each one of those three motors would be a Servo object, or
as it is commonly called an instance of the class Servo.

Example of an Arduino C++ program.

void setup() {

 int a = 10;

 int b = 20;

}

void loop() {

 for (int i = 0; i < b; i++) {

 a += i;

 cout << a;

 }

}

setup() runs once to setup
variables and objects.

loop() runs
repeatedly in
the Arduino.

className objectName;

objectName.classMethod();

In general, you want to write the setting up code inside the body of void setup(), the main programming
logic inside the body of void loop(), and any constant or function declarations outside the body of these
two functions.

Object Method

Class Object

62

63

1

Read the sentences and tick True or False. True False

1. IoT devices can lock the doors of a residence.

2. You cannot monitor a smart home application from a smartphone.

3. �Legislation is up to date on current issues regarding IoT smart security
applications.

4. Smart camera systems can be accessed only by the residence’s network.

5. Smart home systems can automatically contact first responder services.

6. Smart lock systems can use biometric data to identify users.

7. C++ is a completely different language than C.

8. C++ is an object-oriented language.

9. C++ arrays are always type-defined.

10. The setup() and loop() functions are not important in an Arduino program.

Exercises

2 	 Identify the benefits provided by smart security IoT applications.

64

3 	 Identify the potential risks of advanced smart security IoT applications.

4 	� Classify the most common IoT-enabled smart home devices

65

5 	 Define the basic data types of a C++ program.

6 	� Analyze the fundamental rules of naming C++ variables.

66

7 	 Demonstrate how "for" loops are implemented in C++.

8 	� Describe the difference between the “while” and “do … while” loops in C++.

67

9 	 State the use of the setup() and loop() functions in an Arduino sketch.

10 	� Analyze how an electronic component connected to an Arduino board can be abstracted
to a C++ class and object.

Lesson 2

From Tinkercad Blocks to C++

Link to digital lesson

Migrating from Visual Blocks Programming to C++ Programming
In this lesson, we are going to learn how to move from programming an Arduino with Tinkercad blocks
to programming it with C++. While Tinkercad blocks are useful for rapid prototyping, using native C++
is necessary for utilizing the full capabilities of the Arduino microcontroller. We are going to learn the
basic functions and statements to start programming an Arduino microcontroller with C++.

Variable Assignments and Operations

Declaring and changing variables in Tinkercad blocks is done through
the Variables and Math command groups. The following table
illustrates examples of the available commands.

Command groups used:

Declaring a variable named x.

Tinkercad block C++

int x = 0;

Assigning a value to a variable.

Tinkercad block C++

x = 3;

Figure 2.10: Tinkercad blocks to C++ code

68

Changing a variable by a specific value.

Tinkercad block C++

x += 5;

Performing a mathematical operation between variables x and y.

Tinkercad block C++

x = x - y;

Assigning a third variable z to a mathematical operation between variables x and y.

Tinkercad block C++

z = x / y;

Performing a mathematical comparison between variables x and y.

Tinkercad block C++

x < y

Performing a logical comparison between variables x and y.

Tinkercad block C++

x != y

Performing a logical operation between two statements.

Tinkercad block C++

x != y && x < y

69

Conditional Statements, Loops and Output Messages

Building conditional statements, loops and output messages in Tinkercad
blocks is done through the Control and Output command groups.
The following table illustrates examples of the available commands.

Print a message to the Serial Monitor.

Tinkercad block C++

Serial.println("hello world");

Wait for 5 seconds.

Tinkercad block C++

delay(5000);

Execute the blocks in the if codeblock if the logical condition is true.

Tinkercad blocks C++

if (x < 10) {

 y += 5;

}

Execute the blocks in the if codeblock if the logical condition is true.

Tinkercad blocks C++

if (x >= 10 && x < 20) {

 y += 10;

}

else {

 y += 20;

}

Command groups used:

70

Arduino Digital and Analog Pin I/O

Interacting with the Arduino board’s digital and analog pins in Tinkercad
blocks is done through the Input, Output, and Math command groups. Each
time that a pin is used, whether it is analog or digital, Tinkercad blocks
recognizes if it is used for digital or analog I/O. To use a pin, you need to
specify in the setup() Arduino function whether it is used in INPUT or
OUTPUT mode. For analog output, the pins 3, 5, 6, 9, 10, 11 are used with
Pulse Width Modulation (PWM). The following table illustrates examples
of the available commands.

Execute the blocks in the for codeblock if the logical condition is true.

Tinkercad blocks C++

for (counter = 0; counter < 5; ++counter) {

 y += 1;

 }

Repeat a while loop under the following condition.

Tinkercad blocks C++

while (x <= 10) {

 x += 1;

}

Command groups used:

Getting the value of the digital pin 4 and storing it in the variable x.

Tinkercad block C++

pinMode(4, INPUT);

x = digitalRead(4);

71

Setting the value of the digital pin 4 to HIGH.

Tinkercad block C++

pinMode(4, OUTPUT);

digitalWrite(4, HIGH);

Getting the value of the analog pin A3 and storing it in the variable y.

Tinkercad block C++

pinMode(A3, INPUT);

y = analogRead(A3);

Setting the value of the pin 10 to the analog value 15 using PWM.

Tinkercad block C++

pinMode(10, OUTPUT);

analogWrite(10, 15);

Examples of Migration from Tinkercad Blocks to C++
We will create simple examples in Tinkercad to showcase the migration of programming
the Arduino board with Tinkercad blocks, to programming it with C++.

Blinking LEDs Example

We will build a simple program
that creates two loops that blink
an LED light 5 and 10 times at
different rhythms.

Components needed:

•	1 Arduino Uno R3

•	1 LED

Components that you will use in this project

Arduino Uno R3 LED

Figure 2.11: Project components
72

Programming the Arduino
The program will blink the LED light every 1
second 5 times, and then it will blink the LED
light every 200 milliseconds 10 times.

Connecting the LED:

	> Connect the Cathode of the LED to
the GND of the Arduino and change
the wire color to black. 1

	> Connect the Anode of the LED to
the Digital Pin 11 of the Arduino and
change the wire color to green. 2

1 2

int counter;

int counter2;

void setup() {

 pinMode(11, OUTPUT);

}

void loop() {

 for (counter = 0; counter < 5; ++counter) {

 digitalWrite(11, HIGH);

 delay(1000); // Wait for 1000 millisecond(s)

 digitalWrite(11, LOW);

 delay(1000); // Wait for 1000 millisecond(s)

 }

 for (counter2 = 0; counter2 < 10; ++counter2) {

 digitalWrite(11, HIGH);

 delay(200); // Wait for 200 millisecond(s)

 digitalWrite(11, LOW);

 delay(200); // Wait for 200 millisecond(s)

 }

}

Tinkercad blocks C++

Figure 2.12: Connecting the LED

73

Creating the circuit:

	> Connect the Cathode of the LED to the
GND of the Arduino and change the
wire color to black. 1

	> Connect the Anode of the LED to
the Digital Pin 11 of the Arduino and
change the wire color to green. 2

	> Connect the Signal of the PIR Sensor to
the Digital Pin 10 of the Arduino and
change the wire color to orange. 3

	> Connect the Power of the PIR Sensor
to the 5V of the Arduino and change
the wire color to red. 4

	> Connect the Ground of the PIR Sensor
to the GND of the Arduino and change
the wire color to black. 5

PIR Alarm Example

We will expand the previous project with a PIR
alarm that will send a signal to light the LED 3
times in rapid succession.

•	Components needed:

•	1 Arduino Uno R3

•	1 LED

•	1 PIR Sensor

Components that you will use in this project

Arduino Uno R3

LED

PIR Sensors

3
2

1 5

4

Figure 2.13: Project components

Figure 2.14: Connecting the circuit
74

Tinkercad blocks

C++

int counter;

void setup() {

 pinMode(10, INPUT);

 pinMode(11, OUTPUT);

}

void loop() {

 if (digitalRead(10) == HIGH) {

 for (counter = 0; counter < 5; ++counter) {

 digitalWrite(11, HIGH);

 delay(300); // Wait for 300 millisecond(s)

 digitalWrite(11, LOW);

 delay(300); // Wait for 300 millisecond(s)

 }

 }

}

Programming the Arduino
The program will check if the PIR
sensor has detected an object in
its Field of View. If it has detected
an object, it will send a signal to
blink the LED light 5 times in rapid
succession.

75

Creating the circuit:

	> Connect the Power pin of the Temperature
Sensor to the 5V of the Arduino and
change the wire color to red. 1

	> Connect the Vout pin of the Temperature
Sensor to the Analog pin A0 of the Arduino
and change the wire color to green. 2

	> Connect the GND pin of the Temperature
Sensor to the GND of the Arduino and
change the wire color to black. 3

	> Connect Terminal 1 of the DC motor to the
GND of the Arduino and change the wire
color to black. 4

	> Connect Terminal 2 of the Servo motor
to the Digital pin 11 of the Arduino and
change the wire color to red. 5

DC Motor Example

We will build a simple circuit to control a DC motor
depending on the temperature of the environment.
You will need the following components:

•	1 Arduino Uno R3

•	1 DC Motor

•	1 Temperature Sensor (TMP36)

Components that you will use in this project

DC Motor

Temperature
SensorArduino Uno R3

5

4

2

1 3

Figure 2.15: Project components

Figure 2.16: Connecting the circuit
76

Tinkercad blocks

C++

int temperature = 0;

void setup() {

 pinMode(A0, INPUT);

 Serial.begin(9600);

 pinMode(11, OUTPUT);

}

void loop() {

 temperature = analogRead(A0);

 Serial.println(temperature);

 if (temperature >= 27) {

 digitalWrite(11, HIGH);

 delay(2000); // Wait for 2000 millisecond(s)

 digitalWrite(11, LOW);

 }

}

Programming the Arduino
The program will create a variable named
temperature which will be connected to the
Analog pin A0 of the Arduino and record the
temperature of the environment.

When the temperature variable reaches the
value 27 (degrees Celsius) in the Tinkercad
simulation, it will activate the DC motor for
2 seconds.

The Serial object is used for printing
in the Serial Monitor. In the setup()

function, the begin() function
initializes the Serial Monitor so it
can be used later. Then, the user
can print values and messages to

the Serial Monitor with the function
print() or println(), with the latter
also adding a newline at the end.

77

78

1 	� Write a C++ function that takes two float data type arguments, an analog signal, and a
multiplier. The function multiplies the signal and returns it.

2 	� Write a C++ sketch that reads an analog signal input from a pin that is a temperature
reading in Fahrenheit. Create a function that converts this value to degrees Celsius and
sends it to a pin as an analog output.

Exercises

79

3 	 Find the syntax error and the logical error in the following code snippets:

Syntax Error:

Syntax Error:

Logical Error:

Logical Error:

void loop() {

 temperature = digitalRead(A0);

 Serial.println(temperature);

 if (temperature >= 270) {

 digitalWrite(11, 1);

 // Wait for 2000 millisecond(s)

 delay(2000);

 digitalWrite(11, 0);

 }

}

void loop() {

 for (counter = 0; counter < 5; --counter) {

 digitalWrite(11, HIGH);

 // Wait for 1000 millisecond(s)

 delay("1000");

 digitalWrite(11, LOW);

 // Wait for 1000 millisecond(s)

 delay("1000");

 }

}

80

4 	� Write a C++ sketch for the Arduino that uses the function from exercise 1 and reads an
analog signal input. It then creates a for loop that uses the function from exercise 1 to
amplify the original signal 5 times. Each time the signal is amplified, it is sent to a pin
as an analog output.

5 	� Extend the Blinking LEDs example to accommodate another LED light of a different
color that blinks every time the first LED light is off.

81

6 	� Extend the PIR alarm example to accommodate another PIR alarm and another LED
light of another color. Each PIR alarm will be bound to an LED light which will blink
depending on whether the PIR alarm detected an object.

7 	� Adjust the DC motor example to send an analog signal to the DC motor depending on
the temperature that is detected by the TMP sensor.

Link to digital lesson

Build a Smart Door Lock
In this project the components you are going to use are

•	Arduino Uno R3

•	Keypad 4x4

•	LCD 16x2 (I2C)

•	Micro Servo

Arduino Uno R3

LCD 16x2 (I2C)

Micro Servo

Keypad 4x4

Components that you will use in this project

Figure 2.17: Project components

Lesson 3

Microcontroller
Programming with C++

82

Connecting the Keypad:

	> Find the Keypad 4x4 component from the Input category in the
components list and drag and drop it in the workplane. 1

	> Connect the Row 1 of the Keypad to the Digital Pin 9 of the Arduino. 2

	> Connect the Row 2 of the Keypad to the Digital Pin 8 of the Arduino. 3

	> Connect the Row 3 of the Keypad to the Digital Pin 7 of the Arduino. 4

	> Connect the Row 4 of the Keypad to the Digital Pin 6 of the Arduino. 5

	> Connect the Column 1 of the Keypad to the Digital Pin 5 of the Arduino. 6

	> Connect the Column 2 of the Keypad to the Digital Pin 4 of the Arduino. 7

	> Connect the Column 3 of the Keypad to the Digital Pin 3 of the Arduino. 8

	> Connect the Column 4 of the Keypad to the Digital Pin 2 of the Arduino. 9

	> Change all wires color to green.

You will start by adding the keypad from the input category
in the components and connect it to Arduino.

1

2 4 6 8

3 5 7 9

Figure 2.18: Connecting the Keypad
83

Connecting the LCD display:

	> Find the LCD 16x2 (I2C) component from the Output category in the components list and drag
and drop it in the workplane. 1

	> Connect the Ground of the LCD to the GND of the Arduino and change the wire color to black. 2

	> Connect the Power of the LCD to the 5V of the Arduino and change the wire color to red. 3

	> Connect the SDA of the LCD to the SDA of the Arduino and change the wire color to green. 4

	> Connect the SCL of the LCD to the SCL of the Arduino and change the wire color to yellow. 5

Now, find the LCD display from the ouput category in the
components and connect it to the Breadboard.

2

1

5

4
3

Figure 2.19: Connecting the LCD display
84

4

3

Finally, you will wire the Servo motor.

Find the Servo motor from the ouput category in the components
and connect it to the Breadboard.

Connecting the Servo motor:

	> Find the Micro Servo component from the Output category in
the components list and drag and drop it in the workplane. 1

	> Connect the Ground of the Servo motor to the GND of the
Arduino and change the wire color to black. 2

	> Connect the Power of the Servo motor to the 5V of the
Arduino and change the wire color to red. 3

	> Connect the Signal of the Servo motor to the Digital Pin 11 of
the Arduino and change the wire color to orange. 4

1

2

Figure 2.20: Connecting the Servo motor
85

Include the Libraries

Apart from the Arduino controller, to use the rest of the components and program their logic in C++
you first need to include their libraries in the code section of the Tinkercad platform. These libraries
provide many functions specific to each component.

Create the Objects

After including the necessary libraries, you need to create some objects and initialize some parameters.
The objects that you need to create are

•	an LCD object,

•	a servo object,

•	a keypad object.

For the current project, you need the following libraries.

To include a library in C++ you need to type:

#include <library name>

For the LCD panel

#include <Adafruit_LiquidCrystal.h>

for the keypad

#include <Keypad.h>

for the servo motor

#include <Servo.h>

When creating an object (or an instance) of a class, sometimes you need to provide some arguments
to the constructor of this object. A constructor is a special class method that is called when an object
is created, and its functionality is to initialize the object’s parameters.

86

To create a servo motor object:

Servo servo;

Where "Servo" is the object type and "servo" is the actual
object that you use in the code. You don’t need to provide
any initialization parameters.

To create an LCD display object:

Adafruit_LiquidCrystal lcd(0);

With this command, you initialize an object of type
Adafruit_LiquidCrystal and pass its initial Arduino address
(which is 0 by default) as an argument to the constructor
of the class.

The creation and initialization of the Keypad object needs some setup code.

At first you need to specify the number of rows and columns the Keypad has.
You do this with the commands:

const byte numRows = 4; // number of rows on the keypad

const byte numCols = 4; // number of columns on the keypad

Here, you specify that the number of rows (numRows) is of the type “const
byte” and its value is 4. The same applies to numCols.

servo motor object

LCD display object

Keypad object

Figure 2.21:
Servo motor (Tinkercad object)

Figure 2.22: LCD display (Tinkercad object)

Figure 2.23:
Keypad (Tinkercad object)

87

Then you need to define the key pressed according to the row and column exactly as it appears on
the keypad. The way to do this is:

// �keymap defines the key pressed according to the rows and columns just as
they appear on the keypad

char keymap[numRows][numCols] =

 {

 {'1', '2', '3', 'A'},

 {'4', '5', '6', 'B'},

 {'7', '8', '9', 'C'},

 {'*', '0', '#', 'D'}

 };

Here, you create the keymap array with the numRows and numCols you defined earlier and explicitly
define the keys that are on the keypad.

After that, you need to setup the keypad connections to the Arduino terminals. You do this by defining
two variables of type byte:

// Code that shows the the keypad connections to the arduino terminals

byte rowPins[numRows] = {9,8,7,6}; //Rows 0 to 3

byte colPins[numCols] = {5,4,3,2}; //Columns 0 to 3

The last step is to define a Keypad object by calling its constructor and providing the necessary
arguments.

// initializes an instance of the Keypad class

Keypad keypad = Keypad(makeKeymap(keymap), rowPins, colPins, numRows, numCols);

To conclude the setup code, you define a variable called password that will store the password of the
door lock and it is an array of characters with length 4.

char password[4];

88

The code of the setup() function is:

void setup()

{

 //servo setup

 servo.attach(11);

 servo.write(0);

 //lcd setup and password set

 lcd.begin(16, 2);

 lcd.setCursor(0, 0);

 lcd.print("Set 4 character");

 lcd.setCursor(0, 1);

 lcd.print("password:");

 for(int i = 0; i < 4; i++) {

 password[i] = keypad.waitForKey();

 }

}

Break down the Code

At this point, the setup code is completed.

As we explained in Lesson 1, the Arduino controller
executes the setup() function only once, when it
is powered on and then executes the loop()
function repeatedly.  
Let us break this code down.

We use two servo functions
from the Servo library.

After that, we use three functions of the
Adafruit_LiquidCrystal library. These are:

The last piece of code in the setup() function is
a for loop which stores the 4-character password
the user types on the Keypad, in the variable
password[4].

To do so the Keypad library function:

servo.write(0), which is used to write a
value to the servo, in this case, it writes the
value 0, controlling the shaft accordingly.
On a standard servo, this will set the angle
of the shaft (in degrees), moving the shaft
to that orientation.

keypad.waitForKey() is called. This function
will get the key that was pressed and store it
in the password array.

lcd.begin(col,row) which initializes the
interface to the LCD screen and specifies
the dimensions (width and height) of the
display. begin() needs to be called before
any other LCD library commands.

The arguments are:

•	cols, which is the number of columns
that the display has

•	rows, which is the number of rows that
the display has

and because the LCD screen that you will
use is 16x2 you give as arguments col=16
and row=2, hence lcd.begin(16,2);

The next function is:

servo.attach(11), where we
attach the Servo variable to pin 11.

lcd.setCursor(col,row) which sets the location at
which subsequent text written to the LCD will be
displayed. So, to display the phrase "Set 4 character
password" you need both rows of the lcd screen.
On the first row, the phrase "Set 4 character" will
be displayed and on the second row the phrase
"password" will be displayed. That’s why before
displaying the first phrase you call the function
as lcd.setCursor(0, 0); and to display the second
phrase you call the function as lcd.setCursor(0, 1);

89

Now for the main functionality of this project the loop() function will be getting called repeatedly.

The code of the loop() function is:

void loop()

{

 // clear the screen and display the new message

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Enter password:");

 bool correctPass = true;

 char buttonPressed;

 // �this code checks each button pressed against the corresponding password
digit

 // �e.g. it will check the 1st button pressed against the first digit of the
password and so on

 for (int i = 0; i < 4; i++) {

 buttonPressed = keypad.waitForKey();

 if(password[i] != buttonPressed){

 correctPass = false;

 }

 lcd.setCursor(i, 1);

 lcd.print(buttonPressed);

 }

 delay(1000);

 //this code will be executed if the password is correct

 if (correctPass) {

 // clear the lcd screen

 lcd.clear();

90

Break this Code down

To start with, there is some code to clear the lcd screen and display a message asking for the
password.

 // set the cursor to the beginning of the 1st line

 lcd.setCursor(0, 0);

 lcd.print("Correct password!");

 // set the cursor to the beginning of the 2nd line

 lcd.setCursor(0, 1);

 lcd.print("Unlocking...");

 // write the angle by which the servo will rotate

 servo.write(180);

 // wait 5 sec and then rotate the servo to its original angle

 delay(5000);

 servo.write(0);

 }

 else {

 // this code will be executed if the password is wrong

 // clear the lcd screen

 lcd.clear();

 // set the cursor at the 1st col,row

 lcd.setCursor(0, 0);

 // print the message

 lcd.print("Wrong password!");

 }

}

 // clear the screen and display the new message

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Enter password:");

91

Then there is the code that takes the user-typed password and checks whether this code is
correct or not. The way it does this is by comparing the buttons pressed one by one sequentially
against the digit of the password that is in the same position.

Whenever the code compares two keys that are not the same it should update a variable with the
information that the password is not correct. It does not matter if the wrong key occurs at the first
digit, last digit or anywhere in between. The complete password will be wrong. So, to store this
information you can use a boolean variable that will be initialized as true and whenever a wrong key
occurs, its value will be set to false. After the comparison is done, you can check the value of this
variable and if that value is true it means the user typed the correct password. If that value is false,
it means the user typed a wrong password.

For example, let us say the password set in the beginning is "5456" and the user types the
password "5453". Since every key that the user presses will be compared to the corresponding
password key, what will happen is:

5 is compared to 5 (they are the same, so no problem so far)

4 is compared to 4 (still the same, still no problem)

5 is compared to 5 (still no problem)

3 is compared to 6 (they are not the same, so the password pressed is NOT correct).

The functionality we just described is performed by this piece of code:

 bool correctPass = true;

 char buttonPressed;

 // �this code checks each button pressed against the corresponding password
digit

 // �e.g. it will check the 1st button pressed against the first digit of the
password and so on

 for (int i = 0; i < 4; i++) {

 buttonPressed = keypad.waitForKey();

 if(password[i] != buttonPressed){

 correctPass = false;

 }

 lcd.setCursor(i, 1);

 lcd.print(buttonPressed);

 }

92

What is left now, is to unlock the door (rotate the servo) if the password typed was correct and lock
it again after a period of time, or to display a message saying the password was wrong.

This functionality is performed by the code:

// this code will be executed if the password is correct

if(correctPass){

 // clear the lcd screen

 lcd.clear();

 // set the cursor to the beginning of the 1st line

 lcd.setCursor(0, 0);

 lcd.print("Correct password!");

 // set the cursor to the beginning of the 2nd line

 lcd.setCursor(0, 1);

 lcd.print("Unlocking...");

 // write the angle by which the servo will rotate

 servo.write(180);

 // wait 5 sec and then rotate the servo to its original angle

 delay(5000);

 servo.write(0);

}

else {

 // this code will be executed if the password is wrong

 // clear the lcd screen

 lcd.clear();

 // set the cursor at the 1st col,row

 lcd.setCursor(0, 0);

 // print the message

 lcd.print("Wrong password!");

 }

93

Finally, the complete code for the door lock project is:

Complete Code

// C++ code

//

#include <Adafruit_LiquidCrystal.h>

#include <Keypad.h>

#include <Servo.h>

Adafruit_LiquidCrystal lcd(0);

Servo servo;

const byte numRows = 4; //number of rows on the keypad

const byte numCols = 4; //number of columns on the keypad

// �keymap defines the key pressed according to the rows and columns just as they
appear on the //keypad

char keymap[numRows][numCols] =

{

{'1', '2', '3', 'A'},

{'4', '5', '6', 'B'},

{'7', '8', '9', 'C'},

{'*', '0', '#', 'D'}

};

// Code that shows the the keypad connections to the arduino terminals

byte rowPins[numRows] = {9,8,7,6}; //Rows 0 to 3

byte colPins[numCols] = {5,4,3,2}; //Columns 0 to 3

// initializes an instance of the Keypad class

Keypad keypad = Keypad(makeKeymap(keymap), rowPins, colPins, numRows, numCols);

94

char password[4];

void setup()

{

 // servo setup

 servo.attach(11);

 servo.write(0);

 // lcd setup

 lcd.begin(16, 2);

 // lcd print 1st line

 lcd.setCursor(0, 0);

 lcd.print("Set 4 character");

 // lcd print 2nd line

 lcd.setCursor(0, 1);

 lcd.print("password:");

 // gets and stores the password

 for(int i = 0; i < 4; i++){

 password[i] = keypad.waitForKey();

 }

}

void loop() {

 // clear the screen and display the new message

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Enter password:");

 bool correctPass = true;

 char buttonPressed;

95

 // this code checks each button pressed against the corresponding password digit

 // �e.g. it will check the 1st button pressed against the first digit of the
password and so on

 for(int i = 0; i < 4; i++) {

 buttonPressed = keypad.waitForKey();

 if(password[i] != buttonPressed) {

 correctPass = false;

 }

 lcd.setCursor(i, 1);

 lcd.print(buttonPressed);

 }

 delay(1000);

 //this code will be executed if the password is correct

 if (correctPass){

 // clear the lcd screen

 lcd.clear();

 // set the cursor to the beginning of the 1st line

 lcd.setCursor(0, 0);

 lcd.print("Correct password!");

 // set the cursor to the beginning of the 2nd line

 lcd.setCursor(0, 1);

 lcd.print("Unlocking...");

 // write the angle by which the servo will rotate

 servo.write(180);

 // wait 5 sec and then rotate the servo to its original angle

 delay(5000);

 servo.write(0);

 }

 else {

// this code will be executed if the password is wrong

96

 // clear the lcd screen

 lcd.clear();

 // set the cursor at the 1st col,row

 lcd.setCursor(0, 0);

 // print the message

 lcd.print("Wrong password!");

 }

}

97

98

1 	� Create a circuit in Tinkercad that is connected to a temperature sensor and an LCD
display. Then program it with C++ to display the temperature reading on the LCD display.

Exercises

2 	� Create a circuit in Tinkercad that is connected to a 4x4 keypad and an LCD display. Then
program it with C++ to display the pressed characters on the LCD display.

99

3 	� Create a circuit in Tinkercad that is connected to a 4x4 keypad and two LED lights, one
RED and one green. The user will set a password and then will try to use it. If the input
is right, the green light will light up, and if it is wrong, the red light will blink repeatedly.

4 	� Create a circuit in Tinkercard that is connected to a soil moisture sensor and servomotor.
Then program it with C++ to turn the servomotor when the soil moisture reaches a
certain dryness.

Project

A Smart security system is only one part of a complete IoT smart
home system. There are other IoT applications for homes, but
one of the most important is temperature regulation.

In this project you will extend the circuit and the code of the
smart door lock project to accommodate more electronic
components to control the temperature in the home.

The two main environmental readings that must be
monitored are the temperature and the time of day.
The temperature will be monitored by a temperature
sensor and the time of day by a phototransistor that
indicates the light levels outside of the residence.

1

Connect a DC motor to the circuit which will represent a
thermostat and another LCD display. The LCD display will show
the current temperature in degrees Celsius. The DC motor will
be activated by an analog signal depending on the readings
from the environment.

2

Create various tiers of temperature and light conditions
which will send different analog values to the DC motor.
Cooler environments need more output from the
thermostat (DC motor). Build the circuit and program it
with C++ to implement automatic temperature regulation.

3

100

101

Now you have learned to:
>	 �List the benefits and the risks of an IoT security system.
>	Cite examples of IoT devices used in smart security systems.
>	Use the basic commands in C++.
>	Program an Arduino microcontroller with C++.
>	Create an electronic circuit in Tinkercad and program it with C++.

C++

Class

High Level
Programming Language

Keypad

LCD display

loop()

Object Oriented
Programming Language

Object

setup()

Smart Security

KEY TERMS

Wrap up

102

In this unit, you will learn about smart city applications and the (Message
Queuing Telemetry Transport) MQTT communication protocol. You will
also build an IoT application with an Arduino microcontroller and the
MQTT protocol. Finally, you will perform data analysis operations on the
built application.

Learning Objectives
In this unit, you will learn to:
>	List the layers of a Smart City Architecture.
>	Cite examples of a Smart City.
>	Describe the functionality of the MQTT protocol.
>	Classify the Quality of Service (QoS) of the MQTT protocol.
>	Use Python script to publish messages to MQTT X Client.
>	Create a JSON Data file to store reports.
>	Use a Jupyter Notebook to perform data analysis operations

on the JSON data file.

Tools
> Arduino IDE

> JetBrains PyCharm

> Autodesk Tinkercad Circuits

> MQTT X Client

3. �IoT messaging

Figure 3.1: A Smart City IoT Architecture

Lesson 1

Smart Cities and the MQTT Protocol

Link to digital lesson

A Smart City IoT Architecture

The main challenge of smart IoT solutions is connecting
multiple complex systems into one consolidated solution.
There are many proposed smart city architectures. One
of the most prominent divides a smart city IoT network
into four layers. These are the Street, City, Data Center,
and Services layers.

Data goes from devices at the street layer to the city
network layer, where it is consolidated, normalized, and
stored. The data center layer feeds information to the
services layer, comprising city-service provider apps.

Smart Cities
The majority of cities began as modest urban centers. They were not
originally planned to support a rapidly rising population. Typically, rapid
expansion affects city infrastructure and services. Roads, bridges, and
sewage systems frequently exceed their maximum capacity, making daily
living difficult. Supplying essentials such as water and electricity while
simultaneously lowering the carbon footprint is an immediate challenge.

As the global population increases, so do emissions and consumption.
Population concentration in confined areas limits the ecosystem's ability
to absorb pollutants. Increased emissions and waste contribute to the
acceleration of climate change. Today, cities are accountable for 60–80
percent of the world's energy and greenhouse gas emissions and consume
60 percent of all drinkable water, losing as much as 20 percent to leakage.
Optimizing resources, waste, and emissions with IoT technologies is a major
priority for city authorities worldwide.

Services
layer

Data center
layer

Street layer City layer

103

Table 3.1: Street layer devices and sensors

Type Description

Magnetic sensor

A magnetic sensor may detect a parking event by monitoring changes
in the magnetic field when a heavy metal object, such as a vehicle or a
truck, approaches it.

Lighting controller

A lighting controller can dim and brighten a light based on environmental
variables and time.

Video cameras

Video cameras paired with video analytics can recognize cars, faces, and
traffic conditions for various traffic and security applications.

Air quality sensor

An air quality sensor can detect and quantify quantities of gases and
particulate matter to provide a hyper-localized view of pollution in a
specific location.

Counters

In order to provide traffic analytics, counters record the number of
vehicles moving in the street or parked in a public parking area.

Street Layer

The street layer consists of devices and sensors that gather data and operate depending on the overall
solution's requirements and the networking components needed to collect and aggregate such data.

At the street layer, a range of devices is employed for various smart city use cases, such as:

104

City Layer

The city layer can appear to be a straightforward transport layer between edge devices and the data
center or Internet. Network routers and switches must be deployed at the city layer above the street
layer to support the transfer of big data. The city layer must transmit data through many types of protocols
for various IoT applications. However, some applications are sensitive to delays or packet losses. A lost
packet may trigger an alert or create an incorrect status report. Therefore, the city layer must be resilient
to ensure that a data packet sent from a sensor or gateway will always reach its destination.

Data Center Layer

The gathered sensor data is sent to a data center for processing and storage. Based on this data processing,
important information and patterns will be identified and insights will be generated. For instance, a data
center can give a city-wide perspective of the traffic and assist authorities in determining the demand
for additional or fewer mass transport vehicles. The same traffic data may be used to automatically
manage and synchronize the city's traffic light durations to reduce traffic congestion. Cloud and data
storage services are crucial for developing any comprehensive IoT solution. This data can be stored in
data centers owned by city authorities or private companies depending on the local legislation.

Services Layer

Ultimately, the actual value of IoT systems is determined by the services delivered to authorities and
citizens. The processed data should be displayed following the particular demands of each data consumer,
the distinct user experience requirements, and the different use cases. Buses and other public transit
systems can be redirected if needed to avoid known congestion locations. The number of subway trains
can be dynamically increased in response to an increase in traffic congestion, anticipating the decisions
of commuters to choose public transit instead of their automobiles on days with heavy traffic.

The Ministry of Municipal and Rural Affairs and Housing plans to implement more than 50 IoT smart
city projects by 2030, including smart traffic management and parking, environmental preservation and
trash disposal systems, smart housing, and land management systems. Improving citizens’ quality of life,
financial sustainability, and service quality are the main goals.

Example

Figure 3.2: Τraffic update in real time

105

Smart City Applications

Connected Street Lighting
Street lighting is one of the most expensive metropolitan utilities,
accounting for up to 40 percent of the overall utility bill. Commonly, cities
search for ways to cut lighting costs while simultaneously improving
operating efficiencies and lowering initial expenditure. Installing a smart
street lighting system can result in substantial energy savings and can be
leveraged to deliver new services. Light-Emitting Diode (LED) technology
is at the forefront of the move from conventional to intelligent street
lighting. LEDs with low power consumption are ideally suited for smart
solution applications. For instance, LED color or light intensity can be
modified according to the conditions.

Smart Traffic Control
Traffic is one of the most well-known problems in every city. It is a major
contributor to global pollution and loss of productivity. A smart city traffic
solution would incorporate population counts, transit information, and vehicle
counts on the road and forward the necessary data to traffic planners so they
can take action. It is possible to enable traffic apps in cooperation with IoT
sensors to control traffic and decrease congestion. Using historical data, urban
planners may create more effective strategies to minimize traffic congestion.
Consequences of heavy traffic waves include a rise in local accidents, which
are often minor but increase general congestion. A common solution for
stop-and-go traffic is regulating the standard flow speed based on vehicle
density. An application that detects traffic density in real time can regulate
the length of the traffic light cycle to restrict or eliminate the wave effect by
controlling the number of vehicles added to the flow on major roads.

Connected Environment
The majority of large cities monitor air quality. Costly and decades-old
air quality monitoring stations are frequently used to collect data.
These stations are quite precise in their readings, but their range is
extremely limited. Thus, a metropolis is likely to have several blind
spots without enough data to properly identify air-quality patterns.
Considering the cost and size of air quality monitoring stations,
communities cannot afford to acquire the necessary number of stations
to provide reliable information on a localized level and track pollution
flows as they move through the city over time.

Figure 3.3: Connected Street Lighting

Smart Safety Alerts
On the side of the roads, there is a Dedicated short-range
communications (DSRC) communication unit which serves as
a gateway between vehicle on-board unit OBUs and the
communications infrastructure. A Roadside Unit (RSU) is a
special wireless communicating device located on the roadside
that provides connectivity and information support to passing
vehicles, including safety warnings and traffic information.

Figure 3.4: Smart Traffic Control

Figure 3.5: Smart Air-quality Station

Figure 3.6: Roadside Unit (RSU)

106

MQTT Client
(Publisher)

MQTT Client
(Subscriber)

MQTT Client
(Subscriber)

A smart city always requires localized, real-time, distributed
knowledge about air quality. For this data, smart cities
require the following:

•	Open-data systems that receive measurements of air
quality from existing monitoring stations.

•	IoT sensors that give the same level of precision as the
air quality stations but are far less expensive.

•	Environmental data visualization for authorities and
citizens and storage of previous air quality data records
to trace emissions through time and identify trends.

Message Queuing Telemetry Transport (MQTT)
Introduction to MQTT

During the end of the 1990s, engineers from IBM and Arcom searched for a
dependable, lightweight, and cost-effective protocol to monitor and manage many
sensors and their data from a central server location, as was customary in the oil and
gas sectors. The outcome of their study was the development of the Message Queuing
Telemetry Transport (MQTT) protocol that is now standardized by the Organization
for the Advancement of Structured Information Standards (OASIS). The MQTT protocol
is more commonly used in IoT applications than the HTTP protocol because it is easier
to create complex architectures with devices that publish and receive data packets.

MQTT Basics

An MQTT client can be a "publisher" to send data to an MQTT server operating
as a message server (message broker). The MQTT server receives the publishers'
network connection and application messages. Additionally, it manages the
subscription and unsubscription processes and delivers application data to
MQTT clients serving as subscribers. Clients can subscribe to all or particular
data from a publisher's information pool using MQTT. In this case, the MQTT
client is called a "subscriber". The inclusion of a message broker in MQTT
decouples the data transfer between publishers and subscribers. Publishers
and subscribers are unaware of each other. The MQTT message broker
guarantees that information may be delayed and stored in the event of network
failure, which is an advantage of this decoupling. Due to this, publishers and
subscribers are not required to be online simultaneously. Each client and server
MQTT session consists of four phases: session establishment, authentication,
data exchange, and session termination. Each client that connects to a server
has a unique client ID that identifies the MQTT session between the two parties.
The server treats each client individually when sending an application message
to many clients. The drawbacks of the MQTT protocol are slower transmit
cycles than HTTP, resource discovery and backup services must be implemented
by the user, there is a lack of default security encryption and it is generally
difficult to scale as the number of devices and brokers increases. Figure 3.7: MQTT

functionality

Message Broker
(MQTT Server)

Temperature/
Relative

Humidity Sensor

The Line in the NEOM megacity in the KSA
aims to incorporate the latest breakthrough
smart city technologies to become the
most technologically advanced urban
environment.
NEOM will rely heavily on smart city IoT
solutions to reach its goal of becoming a
zero-emission city with no cars or traffic.

Example

107

Quality of Service (QoS)

The MQTT protocol provides three degrees of service quality (QoS). QoS for MQTT is applied
while exchanging application messages with publishers or subscribers. The delivery protocol
primarily concerns application message delivery from a single sender to a single recipient.

The following table presents the three MQTT QoS levels:

In smart cities, IoT objects can be attacked due to their centralized architecture. Using traditional security
methods may not be adequate for the evolving IoT environment. In the KSA, blockchain IoT technologies will
be developed in large cities to minimize central points of network failure with a distributed architecture. The
NEOM megaproject will base its network on blockchain IoT technologies to provide secure and accessible
network infrastructure for its citizens.

Example

Table 3.2: Quality of Service Levels

Level Description

QoS 0: at most once

•	Doesn't survive failures
•	Never duplicated

This is an unacknowledged and best-effort data service known as
"at most once" delivery. The publisher delivers a single message
to a server, which relays it to each subscriber. The recipient receives
no answer, and the sender does not retry to send the data. The
recipient receives the message either once or not at all.

QoS 1: at least once

•	Survives connection loss
•	Can be duplicated

This QoS level assures messages are sent at least once between
the publisher and server, then between the server and subscribers.
This level guarantees at least one delivery.

QoS 2: exactly once

•	Survives connection loss
•	Never duplicated

This is the highest QoS level and is used when neither message
loss nor duplication is acceptable. This QoS level has an extra cost
since each packet includes an optional variable header with a
packet identification. This level provides a "guaranteed service"
named "exactly once" delivery. The number of retries is irrelevant
as long as the message is sent precisely once.

108

109

1

Read the sentences and tick True or False. True False

1. Smart city technologies are being developed only to optimize traffic flow.

2. City layer network routers must be resilient against potential packet losses.

3. Data from the street layer is sent directly to the Data Center layer.

4. �Data stored in the Data Center layer can be stored on the servers of private
companies.

5. �The services layer contains the applications that the residents of the city use.

6. Connected street lighting systems require LED lights exclusively.

7. Historical data cannot be used to forecast future traffic.

8. Connected environment solutions can be used to reduce city emissions.

9. �The MQTT protocol was created to connect many sensors through a single
service point.

10. �On a basic connection with the MQTT protocol, the publisher and the
subscriber acknowledge each other’s presence

Exercises

2 	�� What is the primary driver behind smart city advancements? Present your ideas below.

110

3 	� Create a diagram showing how data flows in a smart city IoT architecture.

4 	� Provide examples of how sensors are used in a smart city street layer.

111

5 	� Describe how identical systems in the Data Center layer can be used in multiple
applications. Present your ideas below.

6 	� Provide two examples of smart city applications and briefly describe them. Present
your ideas below.

7 	� Describe briefly how the MQTT protocol works.

112

8 	� Classify the three degrees of Quality Of Service for the MQTT protocol.

9 	� Create a diagram with an example of three devices connected by the MQTT protocol,
one publisher, and two subscribers.

In this lesson, you will build a prototype of a smart
garbage can that counts how many actions on average
are required to reach full capacity. A message is sent
to an MQTT broker each time the can is used. When
the can is full, another message is sent to the system's
controller unit that generates reports for the can. For
this project, you will use an Arduino microcontroller
that represents the smart trash can, which you will
program with the Firmata protocol and Python, and
use the EMQX platform to distribute the messages.

Smart Waste Management
Due to overpopulation, very large quantities of waste and garbage
are not collected and processed efficiently, leading to waste
overflows in various locations. This problem occurs because there
are garbage cans that overflow and are not cleared on time. With
smart waste cans, there can be alert messages that notify waste
collection vehicles. Also, with the appropriate data analysis, we
can derive insights into how waste cans are filled to optimize the
whole process further.

Message

Message

Figure 3.8: Smart Waste Management Arduino & MQTT project

Lesson 2

Designing and Programming
a Smart Waste IoT Device

EMQX is an open-source MQTT broker with a
high-performance real-time message processing
engine. It is used to support event streaming for
an extremely large number of IoT devices.

PLATFORM

Link to digital lesson

113

Components & Tools for Project

Phototransistor

A Phototransistor is an electrical component that operates when exposed to light. When light falls
upon the sensor, a proportionate amount of reverse current flows. Phototransistors are widely
employed to detect and convert light pulses to electrical signals.

Tilt Sensor

A tilt sensor is used to measure a reference plane's tilt along multiple axes. Tilt sensors assess the
tilting position relative to gravity and are employed in various applications. They make orientation or
inclination detection simple.

Simulator component Schematic symbolTilt Sensor

Figure 3.9: Phototransistor

Figure 3.10: Tilt Sensor

Phototransistor Simulator component Schematic symbol

114

Arduino Prototype
The Arduino microcontroller will monitor the state of the can and collect the action data
to send through the Firmata protocol. The tilt sensor will be used to record each time the
can is used, simulating the movement of the can’s lid and the phototransistor as a light
sensor, so that when it reaches a certain threshold, it will mean the can is full of garbage.

You will need the following components:

•	1 Arduino Uno R3

•	1 Breadboard Small

•	1 Phototransistor

•	1 Tilt Sensor

•	2 Resistors (1kΩ)

Components that you will use in this project

Arduino Uno R3 Breadboard Small

Tilt Sensor ResistorsPhototransistor

Figure 3.11: Smart Waste project components
115

Setting up the connection to the EMQX broker with MQTTX:

	> Click the Windows search button and type MQTTX. 1

	> Open the MQTTX client desktop app. 2

	> Click New Connection, to create a new connection. 3

	> Type a name for the connection e.g. desktop_connection. 4

	> Click on the Connect button. 5

Connecting to the EMQX Public Broker

You will first need to install the MQTTX client desktop application and then test the
connection with the EMQX public broker. To install the MQTTX client application go
to the website: https://mqttx.app/ and download the latest version.

Run the installer to complete the installation process. You will now open the client
and create a new connection to the EMQX broker.

Figure 3.12: Setting up the connection to the EMQX broker with MQTTX

3

5

4

2

1

116

Loading the components:

	> Find the Arduino Uno R3 from the components library and drag
and drop it into the workplane. 1

	> Find the Breadboard Small from the components library and
drag and drop it into the workplane. 2

	> Find the Ambient Light Sensor [Phototransistor] from the
components library and drag and drop it into the workplane. 3

	> Find the Tilt Sensor 4-pin from the components library and
drag and drop it into the workplane. 4

	> Find the Resistor from the components library and drag and
drop 2 of them into the workplane. 5

Arduino Circuit

You will begin building the Arduino circuit by putting the
required components into the Tinkercad circuits workplane.

Figure 3.13: Loading the components of the circuit

2

1

3

4
5

117

Connecting the Phototransistor:

	> Connect the Emitter end of the
Phototransistor to Analog Pin A0
of the Arduino and change the wire
color to yellow. 1

	> Connect Terminal 2 of the one
Resistor to the same row as the
Emitter of the Phototransistor and
connect Terminal 1 of the Resistor
to the negative column of the
Breadboard Small. 2

	> Connect the Arduino UNO R3 5V
pin to the positive column of the
Βreadboard and change the wire
color to red. 3

	> Connect the Arduino UNO R3
ground pin to the negative column
of the Βreadboard and change the
wire color to black. 4

	> Connect the Collector end of the
Phototransistor to the positive
column of the Breadboard Small. 5

Connecting the Tilt Sensor:

	> Connect Terminal 2 of the other
Resistor to Terminal 2 of the Tilt
Sensor. 1

	> Connect Terminal 2 of the Tilt
Sensor to Digital Pin 3 of the
Arduino and change the wire
color to green. 2

	> Connect Terminal 4 of the Tilt
Sensor to the positive column of
the Breadboard Small and change
the wire color to red. 3

	> Connect Terminal 1 of the
Resistor to the negative column
of the Breadboard Small and
change the wire color to black . 4

Figure 3.14: Connect the Phototransistor

Figure 3.15: Connect the Tilt Sensor

4
1

3

5 2

2

34

1

118

Complete Circuit

The components are connected
to the following pins:

Figure 3.16: Complete circuit in Tinkercad

Figure 3.17: Pins connected to components

Figure 3.18: Photo of the physical circuit

Physical Circuit

This photo represents what the physical circuit will look like.

A0 D3

119

Programming the Arduino

You will begin by uploading the StandardFirmata sketch through the Arduino IDE to setup a
communication channel between the Arduino and the Python script that you will write.

Open PyCharm and install the paho.mqtt.client Python package through pip. In PyCharm, open the
terminal in your working directory and enter the following command:

pip install paho.mqtt.client

Create a new Python file called mqtt_arduino.py and at the beginning of your code import the
following packages:

•	datetime: Create timestamps for the messages that we send.
•	time: Control the program flow.
•	json: Work with JSON objects.
•	pyfirmata: Communicate with the Arduino board through the Firmata protocol.
•	paho.mqtt.client: Create clients that communicate with MQTT brokers.

from datetime import datetime

import time

import json

import pyfirmata

import paho.mqtt.client as mq

Create the following variables which will be used for the MQTT client that we will create. CLIENT_ID
is the name you will give to client. MQTT_BROKER is the address of the public broker provided by
EMQX that you will connect to. TOPIC is the name of the topic that the client will subscribe to. PORT
is the default server port to connect to the MQTT broker. FLAG_CONNECTED is a flag variable you
will use on an event handler function later.

Variables to setup MQTT client

CLIENT_ID = "PUBLISHER_01" # ID of the client

MQTT_BROKER = "broker.emqx.io" # Address of the broker

TOPIC = "waste/drops" # Topic to subscribe to

PORT = 1883 # Default server port

FLAG_CONNECTED = False # Connection flag

120

Add the following lines that initialize a connection to the Arduino with the Firmata protocol and set
the two pins for the light and tilt sensor we will use to get our data.

board = pyfirmata.Arduino('COM4') # Specify communication port

it = pyfirmata.util.Iterator(board) # Select the board to connect

it.start() # Connect to board

Selecting the sensor pins

light_sensor_pin = board.get_pin('a:0:i')

tilt_sensor_pin = board.get_pin('d:3:i')

Create the following variables; can_full is a flag to set whether the can has been filled or not.
garbage_drops is a counter to track how many uses were needed to fill the can.

can_full = False # Flag to indicate whether the can is full

garbage_drops = 0 # Counter for the garbage drops

Create the following function which resets the can_full and garbage_drops variables every time the
can is full, and next we publish a message to the client about it.

def reset_can():

 global garbage_drops # Access the garbage_drops variable

 global can_full # Access the can_full variable

 garbage_drops = 0 # Reset the counter to 0

 can_full = False # Clear the can

Table 3.3: MQTT Broker Connection Variables
Variable Description

CLIENT_ID The name of the MQTT client.

MQTT_BROKER Address of the target MQTT broker.

TOPIC The topic that the client will subscribe to.

PORT The server port to connect to.

FLAG_CONNECTED Flag variable to check server connection.

121

Create the following function to publish a message that the can was used to the client. You will first
create a timestamp variable to record the time and create a dictionary object with the timestamp,
garbage_drops and can_full properties. You will convert this dictionary to a JSON object and then
publish it to the subscribed "waste/drops" topic through the client.

def publish_message():

 global garbage_drops # Access garbage_drops variable

 global can_full # Access can_full variable

 # Create a custom format for the timestamp

 timestamp = str(datetime.now().strftime("%H:%M:%S"))

 msg_dictionary = { # Creating the JSON object

 "timestamp": timestamp,

 "garbage_drops": garbage_drops,

 "can_full": can_full

 }

 msg = json.dumps(msg_dictionary) # Convert dictionary to JSON

 try:

 result = client.publish(TOPIC, msg) # Publish message

 except:

 print("There was an error while publishing the message")

 time.sleep(2)

Create the following event handler function that prints a confirmation message to the terminal about
whether or not the connection to the client was successful. The function's arguments are default
arguments that must be used to bind that function to the appropriate event handler provided by the
paho.mqtt.client library.

def on_connect(client, userdata, flags, rc):

 global FLAG_CONNECTED # Access the FLAG_CONNECTED variable

 if rc == 0: # If rc is 0 the client connected successfully

 FLAG_CONNECTED = True

 print("Connected to MQTT Broker!")

 else:

 print("Failed to connect to MQTT Broker!")

122

In the main part of the program, you will initialize the MQTT client, bind the on_connect event handler
to the above function, connect to the specified MQTT broker, and subscribe to the specified topic.

client = mq.Client(CLIENT_ID) # Initialize an MQTT client

client.on_connect = on_connect # Bind the on_connect event handler

client.connect(MQTT_BROKER, PORT) # Connect to the specified MQTT broker

client.subscribe(TOPIC, 0) # Subscribe to the specified topic

Create the main loop for the program. If the light_value has a value of less than 0.200 then the can
is considered full.

while True:

 # Get sensor values

 light_value = light_sensor_pin.read()

 tilt_value = tilt_sensor_pin.read()

 if (light_value is not None) and (tilt_value is not None):

 print("Light levels : " + str(light_value))

 print("Tilt levels : " + str(tilt_value))

 print("Garbage drops : " + str(garbage_drops))

 # If there is a tilt, add 1 to the counter

 if (tilt_value == True):

 garbage_drops += 1

 # If there is a tilt and the can is full

 # publish a message and reset the can

 if (light_value <= 0.200):

 can_full = True

 publish_message()

 reset_can()

 publish_message()

 time.sleep(1)

123

Complete Code

from datetime import datetime

import time

import json

import pyfirmata

import paho.mqtt.client as mq

Variables to setup MQTT client

CLIENT_ID = "PUBLISHER_01" # ID of the client

MQTT_BROKER = "broker.emqx.io" # Address of the broker

TOPIC = "waste/drops" # Topic to subscribe to

PORT = 1883 # Default server port

FLAG_CONNECTED = False # Connection flag

board = pyfirmata.Arduino('COM4') # Specify communication port

it = pyfirmata.util.Iterator(board) # Select the board to connect

it.start() # Connect to board

Selecting the sensor pins

light_sensor_pin = board.get_pin('a:0:i')

tilt_sensor_pin = board.get_pin('d:3:i')

can_full = False # Flag to indicate whether the can is full

garbage_drops = 0 # Counter for the garbage drops

def reset_can():

 global garbage_drops # Access garbage_drops variable

 global can_full # Access can_full variable

 garbage_drops = 0 # Reset the counter to 0

 can_full = False # Clear the can

124

def publish_message():

 global garbage_drops # Access garbage_drops variable

 global can_full # Access can_full variable

 # Create a custom format for the timestamp

 timestamp = str(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))

 # Creating the dictionary object

 msg_dictionary = {

 "timestamp": timestamp,

 "garbage_drops": garbage_drops,

 "can_full": can_full

 }

 msg = json.dumps(msg_dictionary) # Convert dictionary to JSON

 try:

 result = client.publish(TOPIC, msg) # Publish message

 except:

 print("There was an error while publishing the message")

 time.sleep(2)

 print("Message sent to the MQTT broker")

def on_connect(client, userdata, flags, rc):

 global FLAG_CONNECTED # Access the FLAG_CONNECTED variable

 if rc == 0: # If rc is 0 the client connected successfully

 FLAG_CONNECTED = True

 print("Connected to MQTT Broker!")

 else:

 print("Failed to connect to MQTT Broker!")

125

client = mq.Client(CLIENT_ID) # Initialize an MQTT client

client.on_connect = on_connect # Bind the on_connect event handler

client.connect(MQTT_BROKER, PORT) # Connect to the specified MQTT broker

client.subscribe(TOPIC, 0) # Subscribe to the specified topic

while True:

 # Get sensor values

 light_value = light_sensor_pin.read()

 tilt_value = tilt_sensor_pin.read()

 if (light_value is not None) and (tilt_value is not None):

 print("Light levels : " + str(light_value))

 print("Tilt levels : " + str(tilt_value))

 print("Garbage drops : " + str(garbage_drops))

 # If there is a tilt, add 1 to the counter

 if (tilt_value == True):

 garbage_drops += 1

 # If there is a tilt and the can is filled

 # publish a message and reset the can

 if (light_value <= 0.200):

 can_full = True

 publish_message()

 reset_can()

 publish_message()

 time.sleep(1)

126

Using MQTTX to subscribe to the specified topic:

	> On the menu of the desktop_connection connection,
click on the New Subscription button. 1

	> On the Topic textbox, enter the text waste/drops. 2

	> Click on the Confirm button. 3

Testing the Broker

EMQX is a public MQTT broker for testing and developing MQTT applications. It aids in developing
IoT application protypes without the cost of infrastructure and the development of the broker.
You will use the MQTT X client to test the publishing of our messages. You will later create another
Python script that will receive the published messages, generate reports for the can and perform
data analysis on those reports. After you have uploaded the StandardFirmata sketch to the Arduino,
execute the Python script and move the breadboard to activate the tilt sensor. Every time it is
activated, the garbage count tracker will count up. When you activate the tilt sensor with the light
sensor covered, the program will publish a message that the can is full, resetting the garbage
counter. In the next lesson you will perform data analysis on the data from the published messages.

To test that your messages were published correctly you will use the MQTTX desktop client. Before
executing the Python script you will use the MQTTX client to subscribe to the "waste/drops" topic.
Now the client will wait to receive the messages that are published through the Python script and
are distributed through the EMQX public broker.

3

2

1

Figure 3.19: Using MQTTX to subscribe to the specified topic
127

Viewing Messages through the MQTTX Client

After you have executed the Python script and it begins to publish messages, you will receive those
messages in the MQTTX desktop client like this.

Figure 3.20: Viewing messages through the MQTTX client
128

129

1 	� Create a diagram of an MQTT network with one Arduino as the publisher and two other
Arduinos as the receivers.

2 	� Describe the phototransistor and tilt sensor components and their use cases.

Exercises

130

3 	� Analyze what the public EMQX broker is and how it aids in developing IoT prototype
applications.

4 	� Update the event handler for the on_connect event that prints to the console the
configuration info that you provided to the MQTT client.

5 	� Update the publish_message() function to publish a message with a timestamp that
presents the complete date and time and a new property that contains the client
identifier.

131

6 	� Create a Python script that lets the user type the topic they want to subscribe to and
the message they want to send and then publishes it through the public EMQX broker.
Test your script with the MQTT X desktop client.

MQTT
Broker

Smart Waste Management and Data Analysis
In the previous lesson, you created a smart waste management prototype for a garbage can with an
Arduino microcontroller that monitors its environment, generates data from sensors, and publishes
this data as messages to an MQTT topic. This data needs to be collected and processed to generate
insights from it.

Figure 3.21: Smart Waste project data analysis solution

Lesson 3

Building a Smart Waste
Management Solution

In this lesson, you will create a Python script that will
subscribe to the same topic of the MQTT broker to which
the messages were published. These messages will be
collected, and each time the garbage can is filled, a report
will be generated and stored in another file. This file will
only contain the data from the generated reports. After
that, you will create a Jupyter notebook that will open
the file, analyze the data and generate insights and data
visualizations.

These two files will be named mqtt_receiver.py and
data_analysis.ipynb, respectively. The first script will write
the recorded data into a JSON file, and the second script
will read from the JSON file and perform the data analysis.

mqtt_receiver.py data_analysis.ipynb

WriteCollect Read

Link to digital lesson

132

Creating the JSON Data File

We are going to create a JSON data file with an empty array. The mqtt_receiver.py script will append
each generated report as a JSON object to the array. The data_analysis.py will open this JSON file,
read the JSON array contents and perform the data analysis operations.

Open PyCharm and in your working directory create a new file named data.json. Inside that file create
an empty array object as shown in the box below. The mqtt_receiver.py will append JSON objects of
the generated reports to the array presented below. Save and close the data.json file.

[]

Create a new Python file called mqtt_receiver.py and at the beginning of your code import the
following packages:

•	datetime: Create timestamps for the messages that we send.

•	json: Work with JSON objects.

•	paho.mqtt.client: Create clients that communicate with MQTT brokers.

•	os: Work with files on your computer.

from datetime import datetime

import json

import paho.mqtt.client as mq

from os import path

Create the following variables data_file and data_file_objects which will be used to interact with the
JSON data file.

data_file = "your_file_path" # Absolute path to the JSON data file

data_file_objects = [] # This contains the objects from the JSON data file

133

Create the following variables which will be used for the MQTT client that we will create. CLIENT_ID
is the name we will give to our client. MQTT_BROKER is the address of the public broker provided by
EMQX that we will connect to. TOPIC is the name of the topic that the client will subscribe to. PORT
is the default server port to connect to the MQTT broker. FLAG_CONNECTED is a flag variable we will
use on an event handler function later.

Variables to setup MQTT client

CLIENT_ID = "RECEIVER_01" # ID of the client

MQTT_BROKER = "broker.emqx.io" # Address of the broker

TOPIC = "waste/drops" # Topic to subscribe to

PORT = 1883 # Default server port

FLAG_CONNECTED = False # Connection flag

Create the following event handler function that prints a confirmation message to the terminal about
whether or not the connection to the client was successful. The function's arguments are default
arguments that must be used to bind that function to the appropriate event handler provided by the
paho.mqtt.client library.

def on_connect(client, userdata, flags, rc):

 global FLAG_CONNECTED # Access the FLAG_CONNECTED variable

 if rc == 0: # If rc is 0 the client connected successfully

 FLAG_CONNECTED = True

 print("Connected to MQTT Broker!")

 else:

 print("Failed to connect to MQTT Broker!")

Create the following variables messages_stack and reports which will be used to store information
from the published messages.

messages_stack = [] # The array with the messages per can filling

reports = [] # The array with all the generated report objects

134

Create the following event handler function that triggers each time a message is published to the
subscribed topic. The function's arguments are default arguments that must be used to bind that
function to the appropriate event handler provided by the paho.mqtt.client library.

def on_message(client, userdata, msg):

 global messages_stack # Access the messages_stack variable

 # Decode the message payload

 payload = str(msg.payload.decode())

 # Convert the payload to a JSON object and append it

 # to the messages stack

 payload_object = json.loads(payload)

 messages_stack.append(payload_object)

 # When you receive a message, print it to the terminal

 print("||---- MESSAGE RECEIVED ----||\n")

 print("Payload: " + str(payload_object))

 # If the payload object has the can_filled flag set to True

 # generate a report for the filled can

 if payload_object["can_filled"] == True:

 generate_report()

This Python script that serves
the role of an MQTT receiver

can collect mesages from
multiple Arduino publishers at

the same time. This solution can
be further expanded to process

JSON data with even more
fields containing information
about the publishers as well.

Figure 3.22: Python script serves the role of an MQTT receiver

135

Create the following generate_report function which will create a report JSON object and append it
to the data file every time that a message is received that indicates that the garbage can is full.

def generate_report():

 global data_file_objects # Access data_file_objects variable

 global messages_stack # Access messages_stack variable

 global reports # Access reports variable

 # Getting the first and last objects from the messages_stack

 first_msg = messages_stack[0]

 last_msg = messages_stack[len(messages_stack) - 1]

 # Converting the string attributes of the messages objects to datetime

 time_filled_timestamp = last_msg["timestamp"]

 first_timestamp = datetime.strptime(first_msg["timestamp"],"%H:%M:%S")

 last_timestamp = datetime.strptime(last_msg["timestamp"], "%H:%M:%S")

 garbage_drops = last_msg["garbage_drops"]

 # Calculating the time_to_fill by comparing the timestamps

 # of the first and last fillings

 time_delta = last_timestamp - first_timestamp

 time_to_fill = time_delta.total_seconds() / 60

 report_id = len(reports) # This will be used for object indexing

 # The JSON object that will be appended to the JSON data file

 report = {

 "id": report_id,

 "timestamp": time_filled_timestamp,

 "garbage_drops": garbage_drops,

 "time_to_fill": time_to_fill

 }

136

 # Append the new report to the objects of the data file

 # and write the data_file_objects array to the data file

 data_file_objects.append(report)

 with open(data_file, 'w') as file:

 json.dump(data_file_objects, file, indent=4, separators=(',',': '))

 # Append the report object to the reports array and to the JSON data file

 # and clear the messages stack

 reports.append(report)

 messages_stack = []

In the main part of the program, we will check if the data exists, we will open it and then we will
initialize the MQTT client, bind the on_connect and on_message event handlers to the above functions,
connect to the specified MQTT broker, subscribe to the specified topic and listen for incoming messages.

Check if the data file exists

if path.isfile(data_file) is False:

 raise Exception("Data file not found")

Read the contents of the JSON data file

with open(data_file) as fp:

 data_file_objects = json.load(fp)

client = mq.Client(CLIENT_ID) # Initialize an MQTT client

client.on_connect = on_connect # Bind the on_connect event handler

client.on_message = on_message # Bind the on_message event handler

client.connect(MQTT_BROKER, PORT) # Connect on the specified MQTT broker

client.subscribe(TOPIC, 0) # Subscribe to the specified topic

client.loop_forever() # Listen continuously for messages

137

Complete Code

from datetime import datetime

import json

import paho.mqtt.client as mq

from os import path

data_file = "your_file_path" # Absolute path to the JSON data file

data_file_objects = [] # This contains the objects from the JSON data file

Variables to setup MQTT client

CLIENT_ID = "RECEIVER_01" # ID of the client

MQTT_BROKER = "broker.emqx.io" # Address of the broker

TOPIC = "waste/drops" # Topic to subscribe to

PORT = 1883 # Default server port

FLAG_CONNECTED = False # Connection flag

messages_stack = [] # The array with the messages per can filling

reports = [] # The array with all the generated report objects

def on_connect(client, userdata, flags, rc):

 global FLAG_CONNECTED # Access the FLAG_CONNECTED variable

 if rc == 0: # If rc is 0 the client connected successfully

 FLAG_CONNECTED = True

 print("Connected to MQTT Broker!")

 else:

 print("Failed to connect to MQTT Broker!")

def on_message(client, userdata, msg):

 global messages_stack # Access the messages_stack variable

138

 # Decode the message payload

 payload = str(msg.payload.decode())

 # Convert the payload to a JSON object and append it

 # to the messages stack

 payload_object = json.loads(payload)

 messages_stack.append(payload_object)

 # When you receive a message, print it to the terminal

 print("||---- MESSAGE RECEIVED ----||\n")

 print("Payload: " + str(payload_object))

 # If the payload object has the can_filled flag set to True

 # generate a report for the filled can

 if payload_object["can_filled"] == True:

 generate_report()

def generate_report():

 global data_file_objects # Access data_file_objects variable

 global messages_stack # Access messages_stack variable

 global reports # Access reports variable

 # Getting the first and last objects from the messages_stack

 first_msg = messages_stack[0]

 last_msg = messages_stack[len(messages_stack) - 1]

 # Converting the string datetimes to datetime objects

 first_timestamp = datetime.strptime(first_msg["timestamp"], "%H:%M:%S")

 last_timestamp = datetime.strptime(last_msg["timestamp"], "%H:%M:%S")

 garbage_drops = last_msg["garbage_drops"]

 # Calculating the time_to_fill by comparing the timestamps

 # of the first and last fillings

 time_delta = last_timestamp - first_timestamp

139

 time_to_fill = time_delta.total_seconds() / 60

 report_id = len(reports) # This will be used for object indexing

 # The JSON object that will be appended to the JSON data file

 report = {

 "id": report_id,

 "garbage_drops": garbage_drops,

 "time_to_fill": time_to_fill

 }

 # Append the new report to the objects of the data file

 # and write the data_file_objects array to the data file

 data_file_objects.append(report)

 with open(data_file, 'w') as file:

 json.dump(data_file_objects, file, indent=4, separators=(',',': '))

 # Append the report object to the reports array and to the JSON data file

 # and clear the messages stack

 reports.append(report)

 messages_stack = []

Check if the data file exists

if path.isfile(data_file) is False:

 raise Exception("Data file not found")

Read the contents of the JSON data file

with open(data_file) as fp:

 data_file_objects = json.load(fp)

client = mq.Client(CLIENT_ID) # Initialize an MQTT client

client.on_connect = on_connect # Bind the on_connect event handler

client.on_message = on_message # Bind the on_message event handler

client.connect(MQTT_BROKER, PORT) # Connect on the specified MQTT broker

client.subscribe(TOPIC, 0) # Subscribe to the specified topic

client.loop_forever() # Listen continuously for messages

140

Data Analysis in Jupyter Notebook

Now we will use a Jupyter Notebook to perform data analysis operations on the JSON
data file. Because it would take too long to collect the data needed to perform data
analysis, there is a prefilled JSON dataset that we will use. This dataset simulates leaving
the Arduino prototype running for a long period of time.

The JSON file is available for download here: 
http://binary-academy.com/dnld/KSA/IOT2/U3_L3_DATA.json

In the beginning, we will import the required libraries and read the JSON data from the file.

import os

import pandas as pd			 # library used for data manipulation

import matplotlib.pyplot as plt		 # library used for plotting data

The data that will be used, extracted from the JSON dataset

data = pd.read_json('U3_L3_DATA.json','records',convert_dates=['timestamp'])

We will then describe the dataset to extract statistical properties.

data.describe().round(0)

Figure 3.23: Data description

141

We will create two histograms grouped by the garbage_drops and the time_to_fill properties.

Create histograms for the data using 8 groupings

hist = data.hist(['garbage_drops'],figsize=(10,6),bins=8)

hist = data.hist(['time_to_fill'],figsize=(10,6),bins=8)

We will then create two stem plots to display the garbage_drops and time_to_fill values at each time
interval.

Create stem plots for the data with diamond-shaped ('D') markers

plt.stem(data['timestamp'], data['time_to_fill'], markerfmt='D');

plt.stem(data['timestamp'], data['garbage_drops'], markerfmt='D');

Figure 3.24: Histograms

Figure 3.25: Stem plots

142

Finally, we will create two plots that group the number of garbage_drops for each hour of the day and for
each hour of the week.

Create 2 plots, one that groups mean garbage amount by hour and one by day

fig, (ax1,ax2) = plt.subplots(2,figsize=(12, 8))

fig.supylabel('garbage_drops')

�data.groupby(data["timestamp"].dt.hour)["garbage_drops"].mean().plot(kind='bar',
rot=0, xlabel='Hour of the day', ax=ax1);

Monday = 0, Sunday = 6

�data.groupby(data["timestamp"].dt.day_of_week)["garbage_drops"].mean().
plot(kind='bar', rot=0, ax=ax2);

Figure 3.26: Group by plots

143

144

1 	� Create a diagram that illustrates the relationship between the two Python scripts and
the JSON file that holds the data.

2 	� Create a Python script that connects to three topics and write an on_connect event
handler that prints the configuration info and the topics to which the client is subscribed
to the terminal.

Exercises

145

3 	� Update the on_message object to print info to the terminal about the client that
published the data and the topic that the data was received from.

4 	� Create a new JSON file that will hold all the values from the messages stack and use
the generate_report() function to append the values of the messages_stack to the new
JSON file.

5 	� In the Jupyter notebook, create a new scatter plot for the same data that you processed
in the lesson.

6 	� Add another Python script that will receive the messages that you published from the
script in exercise 6 of lesson 2. When you receive a message print the info about the
publisher, the receiver, and the subscribed topic to the terminal.

Project

Connections with the MQTT protocol are used in real-world projects. The same
architectures for communication through publishers, brokers and receivers can
be applied to various other domains. We will create a smart garden solution
that is connected and monitored through the MQTT protocol. This architecture
can then be scaled to a more industrial application for large smart gardens.

Create a new circuit with an Arduino board, a temperature
sensor, a soil moisture sensor and a phototransistor.

1

Create a final Python script that will subscribe to the topic with all the
readings and will save them in a JSON file. The user will be prompted
as to whether they want to listen to the broker and collect data or create
visualizations for the readings that are already stored.

3

Run the three Python scripts simultaneously, adjust
the environment of the Arduino to update the data
readings and observe the outputted results.

4

Create another Python script that will be the receiver for the data
collected by the Arduino. The user will be prompted to choose which
topic to listen to and then it will create a client to subscribe to that
topic. It will store the messages and it will display an alert if there
is a spike in the latest values.

2

146

147

Now you have learned to:
>	Analyze the layers of a Smart City Architecture.
>	Publish messages by using the MQTT protocol.
>	Create Python script to publish messages to MQTTX Client.
>	Store reports on a JSON Data file.
>	Perform data analysis operations on a JSON data file using Jupyter

Notebook.

City Layer

Client

Data Center Layer

MQTT Server

Message Broker

Phototransistor

Prototype

Publisher

Quality of Service

Receiver

Services Layer

Street Layer

Subscriber

Tilt Sensor

Tracker

KEY TERMS

Wrap up

148

4. �IoT Wireless
Sensor Network
Simulation
In this unit, you will learn the IoT technologies that are used in smart
industry and manufacturing. Students will use CupCarbon to create and
simulate sensor networks. Finally, you will create a Fire Surveillance and
Notification prototype and a Smart Industry and Automation prototype.

Learning Objectives
In this unit, you will learn to:
>	 Recognise IoT technologies in manufacturing.
>	Define the use of the Industrial Automation and Control Systems

in the connected factory.
>	Create and visualize IoT networks using CupCarbon.
>	Simulate an IoT network using CupCarbon.
>	Create Python scripts to program the nodes of a network.
>	Create a Fire Surveillance and Notification IoT prototype.
>	Create a Smart Industry and Automation IoT prototype.

Tools
>	CupCarbon

Link to digital lesson

Lesson 1

Introduction to CupCarbon

Smart Industry
IoT technologies affect all areas of life and industry is no different. Cost minimization and efficiency
improvement have always been vital, but as industrial models evolve and competition rises, the
emphasis is turning to innovation and enhanced business models. After decades of squeezing costs
out of manufacturing processes and the supply chain, businesses are beginning to realize that additional
cost reduction may hinder customer service and production quality.

Several IoT-related technologies are at the core of the digital disruption in manufacturing:

Data-Driven Manufacturing

Big data is transforming the industry. Manufacturers can have access to all
machine-generated data to monitor quality control in real-time, enhance Overall
Equipment Effectiveness (OEE), and decrease unscheduled downtime. OEE is a
well recognized indicator of industrial productivity. Additionally, manufacturers
are researching methods to use this data to facilitate quick retooling in response
to market shifts and other demands.

Operational Technology (OT) 
and Information Technology (IT) Convergence

In the context of the Internet of Things (IoT) in a manufacturing environment,
operational technology consists of Programmable Logic Controllers (PLCs),
computers, and other technology that is frequently similar to IT technology but
is controlled and owned by business operations outside of IT. IP networking
enables deeper machine and factory integration, and the distinction between
factory and business networks is disappearing. Manufacturers are seeking
methods to integrate their processes under a unified networking infrastructure,
pushing beyond traditional silos.

Improved Technology with Lower Costs

Connectivity, monitoring, and optimization of machines are becoming scalable,
automated, and platform-based as a result of the emergence of new technologies.
In this advanced stage of technology, machines may be considered part of a fully
interconnected network system, as opposed to isolated systems. The convergence
of computation, networking and security reduces the cost of connecting devices.

Enhanced Efficiency and Safety

Factories, especially in the food and beverage sector, are seeking ways to achieve
zero-touch processes, to automate manual activities. IoT, along with robotics and
image processing can enable a modern factory to improve efficiency and safety.

149

An Architecture for the Connected Factory
Companies are beginning to integrate their Industrial Automation and Control Systems (IACS) with IT
applications and analytics tools to deliver operational and business-beneficial control and analytics
capabilities. IACS are used either to control basic processes or to monitor that safety measures are employed
when an abnormal condition occurs. The objectives of IACS are quality and efficiency in production while
maintaining a high level of integrity and reliability.

Modbus/TCP

In the industrial sector, Modbus is most frequently employed for master/slave administration. Modbus has
been converted to current communications protocols, such as Ethernet and TCP/IP, similar to other automation
control technologies. Modbus is widely used because the protocol is an open, documented standard that
is well-established worldwide. The Modbus master/slave arrangement is well-suited to the connection-
oriented nature of TCP, however this way of communication is often less versatile.

Connected Factory Challenges

The manufacturing industry has been one of the primary targets of cybercriminals. The convergence of
factory and business networks opens security holes to factory processes that were traditionally isolated.
Frequently, the solution has been simply to isolate the factory floor network from the IT corporate network.
However, a network disconnected from higher-layer processes will have limited capabilities and IoT-enabled
business enhancements. In addition, several potential risks emerge from laptops and workstations on the
plant floor that are physically available to contractors or workers with unrestricted access.

Loop control
sensor

Slave

Power control
sensor

Slave

Flow control
sensor

Slave

NetworkServer Master

Figure 4.1: Modbus network protocol

150

Figure 4.2: Oil production monitoring

The Uthmaniyah Gas Plant is one of
KSA's largest gas processing plants. IoT
and AI solutions enhance productivity
and facility reliability. Drones and
smart objects monitor gas pipeline
refinery equipment and use data
analysis methods to optimize their
usage. Thousands of IoT-enabled
sensors monitor the Khurais oil field
to predict the oil's state in the wells.
These methods reduce energy usage
and maintenance expenses.

Example

Edge Computing in the Connected Factory

The machines on the factory floor can generate vast quantities of data. Many factories have addressed
this issue by deploying computers to capture this data. Collecting data from computers on the factory
floor has created maintenance and security issues, as each computer requires operating system
patches and upgrades. Hardware failures are also prevalent, as equipment is frequently not designed
to withstand factory conditions. Clearly, this method makes it extremely challenging for manufacturing
operations to efficiently gather, process, and respond to data. Such an approach is a huge hindrance
to the visibility and potential commercial benefits that industrial data analytics might provide.

New developments in computation capability at the network's edge are aiding in the resolution of
these issues. With machine-embedded and near-machine edge computing devices that incorporate
switching, routing, and security in a single durable form factor, manufacturers are beginning to
recognize the advantages of linking machines and edge computing services.

Oil and Gas Industry

Oil and gas are two of the most important resources utilized by modern
society. From transportation infrastructure to the supply of plastics,
almost every element of modern life depends on the availability of
these commodities. Today, oil and gas firms are primarily concerned
with reducing costs, increasing efficiency and speed, and maximizing
returns on current investments. Controlling production costs and
enhancing the overall health and safety of hazardous settings are among
the most critical Key Performance Indicators (KPIs) of the sector.

Similarly to other sectors, oil and gas firms use the Internet of Things
for a number of purposes, including the following:

•	Monitoring the state or behavior of industrial equipment for visibility
and control.

•	Maximizing process and resource utilization.

•	Improving business decision making.

Industry Key Challenges as Digitization Drivers

The Internet of Things (IoT) and digitization—the process of
utilizing breakthroughs in information technology to develop
new solutions and technologies for operations, work processes,
and methods—are paving the way for previously impossible
efficiency gains and new business models.

•	Advanced modeling and analytics.
•	Big data.
•	IT/OT convergence.
•	Smart machines.
•	Mobility and cloud.
•	Asset performance management.

151

What CupCarbon is
CupCarbon is a Smart City and Internet of Things Wireless Sensor Network simulator. It can
be used to design, create and visualize IoT networks consisting of nodes, devices and events,
among others. It provides a plethora of tools in order to configure the networks created,
test and optimize them.

Popular protocols you have been taught are included such as Zigbee, Wi-Fi and LoRa, plus
with OpenStreetMap used as an interface so the simulations can take place anywhere, even
in your neighborhood!

Figure 4.3: A CupCarbon project

After successfully creating your desired network, CupCarbon can supply code for your physical Arduino
microcontrollers, so you can try it out on real hardware. The nodes communicate with each other
with scripts. Τhe simulator uses its own programming language, SenScript and also supports Python.
In this unit, you will program the nodes with Python.

152

To download and run CupCarbon:

	> Open your browser and download the file from
http://binary-academy.com/dnld/KSA/IOT2/BinaryCupCarbon.zip 1

	> Open the File Explorer and find the downloaded file in Downloads. 2

	> Right click on the file and choose Extract All.... 3

	> Choose your Desktop as a destination for the extraction and click Extract. 4

	> Find the extracted folder in you Desktop and open in. 5

	> Double-click CupCarbon.jar to start CupCarbon. 6

3

2

Figure 4.4: Downloading CupCarbon

1

6

5

4

153

The CupCarbon Windows
When you open the program you will notice two windows: 
the Main Window containing the Map and the Console.

The Console is used for printing messages created by the simulation, and also
for providing error messages to help the user debug erroneous scripts.

State Bar

Menu Bar

Map

Figure 4.5: CupCarbon Main Window

Figure 4.6: CupCarbon Console

Console

Parameter
Menu

Toolbar

154

2
3

Figure 4.7: Creating a new project

Getting started

In this lesson, you are going to create a simple simulation of an IoT node printing
messages in order to familiarize yourself with the CupCarbon environment.

First, you must create a new project:

To create a new project:

	> Click on the New Project button on the Toolbar. 1

	> Choose your desired location for the project to be
stored, type "My First CupCarbon Simulation" in
the field File name 2 and click on Save. 3

1

155

To place a node:

	> Click on the IoT Node
button on the Toolbar. 1

	> Click on the Map to place
the node. 2

	> Click on the All button
from the State Bar. 3

	> Press Esc.

Placing a node

On the toolbar you can find the various objects you are
going to use in your projects, that either produce signals
and communicate with each other or trigger events. One
such object is the IoT Node which can be placed on the
map and it can be given a Script file to run.

Nodes are the fundamental building blocks of CupCarbon.
They display their ID number and have two circles around
them: the inner is the sensor radius used for detecting
sensors and the outer circle is used for detecting radio
devices, like other nodes.

Figure 4.8: Placing a node

Creating a script

Now you will create a simple script that will
be printing two messages in alternation on
the node itself. The Python code you will
use is the following:

import time

while node.loop():

 node.print("hello")

 time.sleep(1)

 node.print("world")

 time.sleep(1)

1

2

3

156

To create a script:

	> Click on the Python button on the Toolbar. 1

	> Type the Python code into the field. 2

	> Type hello in the File name field. 3

	> Click Save. 4

	> Close the Python Editor window. 5

First you must include the python time library, as you will be using the sleep function included to delay
the prints. The actual instructions for the node have to be encapsulated inside the while node.loop():.
The node can print on itself by using node.print() and it can "sleep" – do nothing – by using time.sleep().
The print() function takes as a parameter the message to be printed in string form e.g. node.print("hello
world") and the sleep() function takes as a parameter a positive number, for as many seconds as you
want the node to by delayed e.g. with time.sleep(3) the node will sleep for 3 seconds.

In your program, the node will print "hello", sleep for 1 second, print "world", sleep again for 1 second
and then start from the top again. It will continue to run forever, unless you stop the simulation.

4

5

2

3

Figure 4.9: Python editor

1

157

To insert the script and run the simulation:

	> Click on the node. 1

	> Click on the Device Parameters tab on the Parameter Menu. 2

	> Click on the Script file box. 3

	> From the drop down menu, choose the hello.py script and click
on the button on the right to insert the script into the node. 4

	> Click on the Save Project button on the Toolbar. 5

	> On the Toolbar, click on the Run IoT Simulation button. 6

Figure 4.10: Inserting the script and running the simulation

1

3

5

2
4

6

Click to Stop IoT Simulation.
to stop the simulation.

158

As expected, the node alternates between printing the strings
"hello" and "world" for 1 second each.

Figure 4.11: The states of the simulation
159

160

2 	 Classify the main IoT technologies that disrupt traditional manufacturing operations.

1

Read the sentences and tick True or False. True False

1. �Data monitoring cannot be used to enhance overall equipment
effectiveness.

2. �OT and IT departments can merge all manufacturing sectors under a single
networking domain.

3. �Connecting the devices of a factory under a single network can reduce
costs.

4. �Zero-touch automated processes in a food and beverage factory can
improve the quality of the final product.

5. PC workstations on factory floors do not create security risks.

6. �Devices in a factory that are not connected to an edge network can lose
valuable data if they malfunction.

7. �IoT systems in the oil and gas industries can prevent hazardous scenarios
for workers.

8. CupCarbon can simulate the connection protocol Zigbee for smart objects.

9. CupCarbon nodes can be programmed exclusively with Python.

10. �CupCarbon can produce sketches for physical microcontrollers such as
Arduino.

Exercises

161

4 	� Describe how edge computing on connected factories can improve their efficiency and
production capabilities.

3 	 Analyze how factories connected to IoT systems are vulnerable to cyberattacks.

162

6 	� In CupCarbon, create a node and a Python script for it. This script will have a loop that
will make the node print the message "A" for 1 second, "B" for 2 seconds, and "C" for
3 seconds. Program the node and run the simulation.

7 	� In CupCarbon, create two nodes and a Python for each one. Each script will display a
repeated "blink" message. Each node will send the message when the other is inactive.
Program the nodes and run the simulation.

5 	� State how smart industry IoT solutions can be used to optimize processes in the oil and
gas industry.

Link to digital lesson

Lesson 2

Communication in an IoT Network

Communication between Devices
An IoT network consists of many devices that send and receive data between each other. These devices
have different capabilities, such as different range, data bandwidth and power consumption, and thus
run different sets of commands to provide a multitude of functions. In the following project, you will
build such a network and explore the various fundamental blocks it consists of.

Fire Surveillance and Notification

In this lesson, you are going to create a project that simulates a fire surveillance system in a factory.
The simulation will create random fires in the factory and the system will inform the factory’s main
control unit about which sector the fire is in. This will be achieved by using a variety of nodes, with
different functions, that will communicate with each other to pass the messages. It will start from
the outer nodes, the "edges", pass through the middle ones, the "proxies", to finally arrive at the
inner node, the "main controller".

The Nodes and their Functions

To represent the different sectors of a factory, you
will use three kinds of nodes in your project:

•	In the edges a fire may occur, determined by a
random number generator. In such cases, the
node will print a message on itself and send a
different message containing the sector number
to its adjacent proxy node and then sleep for a
specific interval.

•	The proxies read any messages they may have
received and forward them to the main controller.
They also print a message on themselves to inform
the user of their action.

•	The main controller likewise reads any messages
it may have received and prints the messages
created by the edge nodes that inform the user
of the fire. Figure 4.12: Nodes and their functions

Edge

Edge Edge

Edge

Proxy Proxy

Controller

163

To create a new project:

	> Click on the New Project button on the Toolbar. 1

	> Choose your desired location for the project to be
stored, type "Fire Surveillance and Notification" in
the field File name 2 and click on Save. 3

Let’s start by creating a new project:

2
3

Figure 4.13: Creating a new project

1

164

Begin building the node network by placing the main controller and the proxies:

To place the controller and proxy nodes:

	> Click on the IoT Node button on the Toolbar. 1

	> Click on the Map to place the node. 2

	> Click on the All button from the State Bar. 3

	> Place two more nodes on the left and right of
the first one, inside its outer circle. 4

	> Press Esc.

If the nodes are not placed inside the
controller’s radius, they will not be able
to communicate. If this is the case, drag
and drop them closer to the controller,
until a two-directional arrow appears

connecting the two nodes.

1

2

3

4

Figure 4.14: Placing the controller and proxy nodes

The first node to be placed
is the main controller and
the others are the proxies.

165

2

3

1

Continue by adding the edge nodes:

To place the edge nodes:

	> Click on the IoT Node button on the Toolbar. 1

	> Place two nodes on each proxy node, inside its outer
circle and not in the range of any other node. 2

	> Click on the All button from the State Bar. 3

	> Press Esc.

Figure 4.15: Placing the edge nodes
166

Creating the Scripts

You will now take a look at the scripts that the nodes will be running.
Let’s start with the edges’ script.

First, include the necessary libraries.

import time

import random

The randint() function takes as argument two integers and returns an integer from the rangewhich includes
the two integers. For example, in our case randint(1, 6) randomly creates an integer from 1 to 6. This will
be used as the random chance a sector may catch fire in each time interval. The integer will be stored in
the variable fire.

while node.loop():

 fire = random.randint(1, 6)

Consider that when the random number generator returns 1, the sector will have caught fire. The script will
check if the variable fire is equal to 1 and if so, it will run a series of commands. This includes printing on
the node itself the message "FIRE!" and sending a message containing its sector ID to the proxy node it is
adjacent to.

The sector’s ID is the same as the node’s ID number, the integer that makes it unique. If the sector’s ID is 5,
the message sent will be "FIRE IN SECTOR 5". The node’s ID and therefore the sector’s can be returned by
the function id(). The ID is returned as a number, so it has to be "casted" as a string first, in other words
converted to the string type, before being concatenated with the remaining message.

 if fire == 1:

 node.print("FIRE!")

 message = "FIRE IN SECTOR " + str(node.id())

The nodes can send data to each other using the send() function. With only one argument, the function
takes a string and broadcasts it to all the nodes inside its range.

 node.send(message)

167

If the random number generator produces any other integer, in our case from 2 to 6, there is no fire in the
sector and the node simply has to print an empty string on itself to clear any previous prints.

 else:

 node.print("")

Finally, the node will sleep for a random time interval, to more closely simulate the real life randomness of
events and incidents. This will be achieved by using the uniform() function that works like the randint()
function but produces real numbers and not only integers. In your project, the time intervals will be between
1 and 4 seconds.

 time.sleep(random.uniform(1, 4))

Complete Code (edge.py)

import time

import random

while node.loop():

 fire = random.randint(1, 6)

 if fire == 1:

 node.print("FIRE!")

 message = "FIRE IN SECTOR " + str(node.id())

 node.send(message)

 else:

 node.print("")

 time.sleep(random.uniform(1, 4))

168

Next is the proxies’ script.

When a node receives data, the data is stored to its buffer until read, thus initially the buffer’s size must be
checked to be greater than zero, meaning it is not empty. The buffer’s size can be returned by the function
bufferSize().

import time

while node.loop():

 if node.bufferSize() > 0:

Then, the data received can be read using the function read(). After the message is read, it is stored to the
variable message. The node also prints an informative message "FORWARDING…" to say that it forwards
the message to the main controller.

 message = node.read()

 node.print("FORWARDING…")

As used in the previous script, the message stored in the variable will be sent to the main controller with
the function send(). This time though, apart from the message it will take an extra argument, the receiving
node’s ID. Because the message is specific to one node with a known ID, the message does not have to be
broadcasted, it can instead be unicasted (sent to only one node). In our case, the main controller was placed
first, thus has an ID equal to 1.

 node.send(message, 1)

Next, the node will sleep for 1 second, so as to give the user time to read the informative message printed
on the node and then the node clears the message by printing an empty string.

 time.sleep(1)

 node.print("")

The script ends with the node sleeping for a very small interval (one hundredth of a second), so it can be
responsive in case it receives a lot of data.

 time.sleep(0.01)

169

Complete Code (proxy.py)

import time

while node.loop():

 if node.bufferSize() > 0:

 message = node.read()

 node.print("FORWARDING…")

 node.send(message, 1)

 time.sleep(1)

 node.print("")

 time.sleep(0.01)

The main controller’s script bears some resemblance to the proxies’. It also checks the buffer and reads the
message received, but the the message it prints on itself is the one originally created by the edge node.

import time

while node.loop():

 if node.bufferSize() > 0:

 message = node.read()

 node.print(message)

Then, like the proxy nodes, the main controller sleeps, but for 2 seconds this time and prints an empty string.
Finally, it sleeps for a small interval, in the same fashion as the proxies.

 time.sleep(2)

 node.print("")

 time.sleep(0.01)

The number parameter
in the send() function

is the ID number of the
controller node.

170

Complete Code (controller.py)

import time

while node.loop():

 if node.bufferSize() > 0:

 message = node.read()

 node.print(message)

 time.sleep(2)

 node.print("")

 time.sleep(0.01)

Figure 4.16: Complete network

Edge

Proxy
Controller

171

Now that you have seen what the scripts do, go on and create them.

To create and apply the script for the controller node:

To create a script:

	> Click on the Python button on the Toolbar. 1

	> Type the Python code into the field. 2

	> Type controller in the File name field. 3

	> Click Save. 4

	> Close the Python Editor window. 5

1

4

5

2

Figure 4.17: Create the script

3

172

To insert the script:

	> Click on the node. 1

	> Click on the Device Parameters tab on the Parameter Menu. 2

	> Click on the Script file box. 3

	> From the drop down menu, choose the controller.py script and
click on the button on the right to insert the script into the node. 4

	> Click on the Save Project button on the Toolbar. 5

3

1

4

5

Figure 4.18: Inserting the script

2

173

Likewise, create the other scripts, copy their codes and apply them to their
corresponding nodes, so all nodes have the script.

When you are done, click the Run IoT Simulation button from the toolbar.
Notice that because you used the random number generators, some sectors
on the edges may catch fire more than others which may not catch fire at all.

Use self-explanatory script
names such as edge.py and

proxy.py.

Figure 4.19: The states of the simulation
174

175

5 	� Extend your project to also support floods. Modify the script of the sectors that are
susceptible to fires, so when the random function returns the value 2, it will mean that a
flood has occurred in that sector and the node will print and send the appropriate message.

4 	� If there is latency in the factory’s network, communication between nodes may be
delayed. Modify the "proxy" nodes’ script to make the nodes sleep for longer. Are any
messages delayed and/or lost? Present your observations below.

1 	� Extend your project to support an additional "edge" node on each "proxy" node, so
that each "proxy" has 3 "edges". Do not forget to insert scripts into the new nodes.

Exercises

2 	� Extend your project to support an additional "proxy" node and add to this "proxy" 2
new "edge" nodes, so that the "main controller" has 3 "proxies" and each "proxy" has
2 "edges". Do not forget to insert scripts into the new nodes.

3 	� State which code section in the scripts influences the frequency that the fires occur. Then,
in CupCarbon, modify your project so that fires are more likely to occur than before.

Lesson 3

IoT and Automated Mobile Devices

Smart Industry and Automation
Automation is a significant advantage of modern technology and a major contributing factor
to the Fourth Industrial Revolution. Smart Industry is enhanced by automation technologies
which upscale business production, leading to larger profits. In the following project you
are going to create a simulation of a system that will check a factory’s storage area for
containers with consumable items that will decay if left outside of refrigeration overnight,
using an automated vehicle.

The automated inspector vehicle follows a predetermined route through the factory storage
area, labeling the item containers according to their contents; consumables and non-
consumables. Each container has an IoT tag that emits a message, using its radio, and informs
the vehicle of its contents. There are also some charging stations throughout the storage
area to charge the vehicle’s battery, as it decreases every time it moves.

Figure 4.20: Automated Industry Vehicle

Link to digital lesson

176

To create a new project:

	> Click on the New Project button on the Toolbar. 1

	> Choose your desired location for the project to
be stored, type "Storage Product Marking" in the
field File name 2 and click on Save. 3

Let’s start by creating a new project:

2
3

Figure 4.21: Creating a new project

1

177

To create the route:

	> Click on the Marker button on the Toolbar. 1

	> Click on the map 5 times, in a similar manner to the picture,
creating lines along the aisles. 2

	> Press Esc.

	> Click on the Marker Parameters tab on the parameter menu. 3

	> Add more markers to the route by clicking on each of the first 4
markers placed and clicking Insert Markers 4 times. 4

	> Click Save. 5

Creating a predetermined route

First, you will create the route along which the inspector vehicle will move.
You will initially add some markers on the map to define the route structure
and then enrich it with some more markers.

1

5 2

4
3

Figure 4.22: Creating a route
178

To add the inspector vehicle node:

	> Click on the IoT Node button on the Toolbar. 1

	> Click on the map to place a node. 2

	> Click on the All button from the State bar. 3

	> Press Esc.

	> Click on the node and press Shift  + 0 four times to increase the sensor radius.

	> Click on the Device Parameters tab on the parameter menu. 4

	> Click on the box box to the right of GPS file. 5

	> From the drop down menu, choose the route1.gps script and click on the button
on the right to insert the route into the node. 6

Adding the inspector vehicle node

The inspector vehicle will be simulated by a node moving along the route you
just created. You will also increase the sensor radius of the node (inner circle)
so that it can reach the charging station’s range.

Figure 4.23: Creating the inspector vehicle node

1

2

3

4

5

6

179

To add the container nodes:

	> Click on the IoT Node button on the Toolbar. 1

	> Click on the map and place 7 nodes near the
route, so that their radio radius includes at least
1 marker from the route. 2

	> Click on the All button from the State bar. 3

	> Press Esc.

Adding container nodes

Now it is time to add the nodes representing the containers.

1

3

2

Figure 4.24: Creating the container nodes
180

To add the charging station nodes:

	> Click on the Mobile button on the Toolbar. 1

	> Click on the map and place 2 nodes spread out along the
route, so that the vehicle’s sensor radius can reach them. 2

	> Press Esc.

Adding charging stations

As the inspector vehicle moves, it consumes energy and thus must be charged. You will place
a couple of charging stations on the route that will recharge the vehicle’s battery when it passes
near them. For this purpose the inner radius, the sensor range, will be used this time.

1

Figure 4.25: Creating the charging station nodes

2

181

Creating the Scripts

Let’s now take a look at the scripts you will be using, starting with the code for the containers.
The two types of containers will have similar scripts.

Start by including the library and printing an empty string on the node to remove any prints from
previous executions.

import time

node.print("")

After the container analyzes the string it will either send back "1" meaning the containers must be
picked or send "2" meaning it must not. In its turn the container prints on itself "PICK" or "DO NOT
PICK" and then it sleeps for 1 second.

	 message = node.read()

	 if message == "1":

		 node.print("PICK")

	 elif message == "2":

		 node.print("DO NOT PICK")

	 time.sleep(1)

The consumables containers will be broadcasting a message, which will include its contents and ID,
so it can be used by the inspector vehicle to categorize each container. The ID is an integer and has
to be converted ("casted") into a string before being concatenated to the string. A space is placed
between the contents info and the ID as only one string can be sent at one time with the send()
function and you have to send two pieces of information here; the space will be used as a separator.

while node.loop():

	 node.send("CONSUMABLES " + str(node.id()))

182

Complete Code (consumables.py)

import time

node.print("")

while node.loop():

 node.send("CONSUMABLES " + str(node.id()))

 message = node.read()

 if message == "1":

 node.print("PICK")

 elif message == "2":

 node.print("DO NOT PICK")

 time.sleep(1)

Complete Code (nonconsumables.py)

import time

node.print("")

while node.loop():

 node.send("NONCONSUMABLES " + str(node.id()))

 message = node.read()

 if message == "1":

 node.print("PICK")

 elif message == "2":

 node.print("DO NOT PICK")

 time.sleep(1)

The difference in the code
between the consumables and

nonconsumables is the string they
send. In the nonconsumables’

script, the string "CONSUMABLES"
becomes "NONCONSUMABLES".

183

Next is the inpector vehicle’s script. At the start, the battery is initialized by setting its max energy to
100 energy units with the battery.setEMax() function and then setting its current level to max with
the the battery.init() function.

import time

node.battery.setEMax(100.0)

node.battery.init()

As each time interval passes, the vehicle will consume a certain amount of energy. To simulate this,
use the battery.consume(1.0) function to consume 1 energy unit for each time interval.

while node.loop():

 node.battery.consume(1.0)

To detect if any charging station is within range of the vehicle, use isSensorDetecting() function and
if one is detected, use battery.init() to fill its energy to the max.

 if node.isSensorDetecting():

 node.battery.init()

Now, the vehicle must check all the messages it has received and answer to their senders, the
containers. First the read string is stored in the local variable recvMsg and then using the split()
function the concatenated string is divided into two strings, according to the space used earlier, in
the form of an array with the name splitMsg. This means that in the first cell of the array, splitMsg[0],
holds the contents of the container and the second cell, splitMsg[1], holds the container’s ID.

 for n in range(node.bufferSize()):

 recvMsg = node.read()

 splitMsg = recvMsg.split()

If the contents string is "CONSUMABLES" it sends the string "1" with the send() function to the sender
container using its ID. Else if it is "NONCONSUMABLES" it sends the string "2". In the end it sleeps for
200 ms, as it needs to be more responsive than the container nodes, because it communicates with
more nodes.

184

 if splitMsg[0] == "CONSUMABLES":

 node.send("1", int(splitMsg[1]))

 elif splitMsg[0] == "NONCONSUMABLES":

 node.send("2", int(splitMsg[1]))

 time.sleep(0.2)

Complete Code (inspector.py)

import time

node.battery.setEMax(100.0)

node.battery.init()

while node.loop():

 node.battery.consume(1.0)

 if node.isSensorDetecting():

 node.battery.init()

 for n in range(node.bufferSize()):

 recvMsg = node.read()

 splitMsg = recvMsg.split()

 if splitMsg[0] == "CONSUMABLES":

 node.send("1", int(splitMsg[1]))

 elif splitMsg[0] == "NONCONSUMABLES":

 node.send("2", int(splitMsg[1]))

 time.sleep(0.2)

185

To create a script:

	> Click on the Python button on the Toolbar. 1

	> Type the Python code into the field. 2

	> Type inspector in the File name field. 3

	> Click Save. 4

	> Close the Python Editor window. 5

Figure 4.26: Create the script

4

2

5

3

1

186

To insert the script:

	> Click on the inspector vehicle node. 1

	> Click on the Device Parameters tab on the
Parameter Menu. 2

	> Click on the Script file box. 3

	> From the drop down menu, choose the inspector.
py script and click on the button on the right to
insert the script into the node. 4

	> Click on Display > Display/Hide Battery/Buffer
levels, from the Menu bar. 5

	> Click on the Save Project button on the Toolbar. 6

Figure 4.27: Inserting the script

3
2

6

4

5

1

187

In a similar way, create the consumables.py and nonconsumables.py
scripts and apply the first script to some of the container nodes and the
second to the rest, so all container nodes have one of these two scripts.

When everything is set, you can click the Run IoT Simulation button
from the toolbar to start the simulation.

Figure 4.28: The simulation running
188

189

1 	� Extend your project by adding more nodes and creating a route with more markers.
Do not forget to insert scripts into the new nodes.

Exercises

2 	� Identify whether your project is using the minimal number of charging stations.
Try removing a station and relocating the others to test your hypothesis.

3 	� Modify the inspector vehicle’s script to consume more energy and run out of battery
quicker. Present your findings below.

4 	� Extend your project by creating a third type of container node, an empty container that
will emit the string "EMPTY" and will not be marked by the inspector vehicle.

5 	� A slow network connection in the factory may have severe implications for the system’s
functionalities. Modify the script of the inspector vehicle’s node to make the node
sleep for longer. Are any messages delayed and/or lost? Present your observations
below.

Project

Communication is key in a factory in order to coordinate different
departments and sectors. When parallelism is applied adeptly,
it can greatly increase efficiency and productivity.

You will be simulating a factory internal delivery system that
consists of a delivery vehicle that moves on a predetermined
route and delivers parts and materials to different sectors.
Create a network of 1 controller with 3 proxies and 3 edge
nodes on each proxy.

1

The delivery vehicle will pass from every edge node and deliver
either parts or materials. Write a script for the edge nodes to ask
for parts or for materials by sending a string with their request
to the vehicle and write a script for the vehicle to provide what
was requested by giving a confirmation.

2

Extend your project so that after the edge nodes receive their
request the forward a message to their corresponding proxy that
they can continue production. In turn the proxies will forward
the message to the main controller, which will print an informing
message stating the sector’s request has been fulfilled.

3

Further extend your project to include a battery on the
vehicle that depletes each time it moves. Add several
charging stations across the route. Are you using the
minimal amount of charging stations?

4

190

191

Now you have learned to:
>	 Identify IoT technologies in manufacturing.
>	Use CupCarbon to simulate networks.
>	Create Python scripts to program network nodes.
>	Use CupCarbon to create IoT projects.

Connected Factory

Data-Driven
Manufacturing

Digitization

Edge Computing

Industrial Automation
and Control Systems

Key Performance
Indicators

Modbus

Operational Technology

Smart Industry

KEY TERMS

Wrap up

Notes

192

