قوانین فیزیاء 2

زيدة الملف :.

1- قوانين فيزياء 2 كاملة

2- ربط للقوانين

ملاحظة: وقوع الخطأ وارد

احداد : وهناح زكريا اشراف الدكتورة : فرح إبراهيم

اذكروني بدعوة بظهر الغيب لعل احدكم اقرب الى الله منزلة وله دعوة لا ترد

$$rac{\Delta heta}{2\pi}=rac{|V_t|_{CE}}{2\pi}$$
 عدد الدورات $=rac{\Delta heta}{2\pi}=\omega$ السرعة الزاوية المتجهة $=\omega$ التسارع الزاوي $=a$ التردد الزاوي $=f=\frac{\omega}{2\pi}=f$

القاعدة العامة: ربط الحركة الخطية بالحركة الزاوية

الخطي = الدوراني * نصف القطر

طبق القاعدة عل كل ن الأتي :.

 $d = r \times \theta$; illicites

السرعة: x = r × w

التسارع: × a = r × ∞

العزم يتلف المصاعب
$$\tau = LF$$
:

 $\tau = Fr \sin \theta$:

au 1 + au 2 = 0 محصلة العزوم:

 $I = F \triangle t$: قانون الدفع

قانون الزخم: P = my

 $\mathbf{p} = \Delta p$: نظرية الدفع والزخم

 $I = F\Delta t = \Delta p = pf - pi = myf - myi : رباعیة علاقات$

في حالة التصادمات في (بعد واحد)

Pci + ppi = pcf + pcf : جسيمين يتصادمان بلا التحام

mcvci + mDvDi = (mc + mD) vf : في حالة التحام الإجسام

أتى وفد لانجاز شغل

قانون الشغل: W = Fd

قوانين أنواع الشغل المختلفة

شغل الجاذبية : wg = ± mgd ربطها : مجد

 $\mathbf{w} \mathbf{f} = -\mu \mathbf{k} * \mathbf{f} \mathbf{n} * \mathbf{d}$: شغل الاحتكاك

تستخدمه اذا كانت القوة والازاحة : w=fd

 $W= fd \cos \theta$: تستخدمه اذا بدأت تظهر لدينا زوايا

قانون الطاقة الحركية : KE =
$$\frac{1}{2}$$
 m v^2 : موف

محمد وضع علم المجد

PE = m.g.d: قانون طاقة الوضع

PEs = $\frac{1}{2}$ K x^2 : طاقة الوضع المرونية في النابض

 $E = mc^2$: الطاقة السكونية

قانون حفظ الطاقة: Ei = Ef

نظرية الشغل والطاقة : W= KEf - KEi

 $\mathbf{I} = \Delta P$: نظرية الدفع الزخم

 $\mathbf{W} = \Delta K \mathbf{E}$: نظرية الشغل الطاقة

 $P = \frac{w}{t}$: القدرة الميكاثيكية بشكل عام

القدرة اللحظية : P = F . v وبطها : بف

الفائدة الميكانيكية للألة: $\frac{Fr}{Fe}$: ما فري

I am dear: ربطها IMA = $\frac{de}{dr}$: الفائدة الميكانيكية المثالية للألة

كفاءة الألة

(القوانين المستخدمة)

$$e = \frac{W}{Wi} \times 100\%$$

$$e = \frac{MA}{IMA} \times 100\%$$

Tk = Tc + 273: للتحويل من كالفن الى درجة مئوية والعكس

حساب الطاقة الحرارية Q

 $Q = mc\Delta T$: عند التسخين $Q = mc\Delta T$

- عند التحول : Q = mH و ربطها : كم هاء

ربما تكون Hv أو

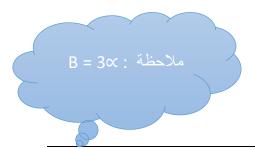
 $\Delta oldsymbol{U} = oldsymbol{Q} - oldsymbol{W}$: القانون الأول للديناميكا الحرارية

 $e = \frac{W}{OH} \times 100\%$: قانون الكفاءة

القانون الثاني للديناميكا الحرارية : $\Delta S = rac{Q}{T}$: اسكت

 $P = \frac{F}{A}$: قانون الضغط

ويظها : روجي هدى $P = \varphi gh$: وجي هدى


 $P = \frac{F^2}{4^1} = \frac{F^2}{4^2}$ فك قانون الضغط

قانون الكثافة : $\varphi = \frac{m}{v}$: ترامب

مبدأ أرخميدس

 \mathbf{F} قانون قوة الطفو $\mathbf{V}\mathbf{g}$: المائع

- انظاهري F_g - F_g = الطفو

$$\propto = \frac{\Delta L}{L \wedge T^{\circ}C}$$
: معامل التمدد الطولي

$$\mathbf{B} = \frac{\Delta V}{V \wedge T} : \mathbf{prop}$$

قانون بویل : P1v1=p2v2

 $\frac{V1}{T1} = \frac{V2}{T2}$: قانون شارلز

 $\frac{P1}{T1} = \frac{P2}{V2}$: قانون جاي لوساك

 $\frac{P1V1}{T1} = \frac{P2V2}{T2}$: القانون العام للغازات:

قانون الغاز المثالي : PV = nRT

قانون هوك : F = -Kx

PEsp = $\frac{1}{2}$ K χ^2 : في النابض المرونية في النابض

 $T = 2\pi \sqrt{\frac{l}{g}}$: قانون الزمن الدوري للبندول

 $V = \lambda f$: القانون المسعف للموجات

 $\lambda = \frac{v}{f}$: قانون طول الموجة

 $V = \lambda \times f$: المعادلة العامة للموجات

تأثیر دوبلر: ($\frac{v-vd}{v-vs}$) زبطها بسرعة

الرنين في الأعمدة (الأنابيب) الهوائية

الأعمدة المغلقة	الأعمدة المفتوحة	الرنين
$\lambda 1 = 4L$	$\lambda 1 = 2L$	الأول
$\lambda 2 = \frac{4L}{3}$	$\lambda 2 = L$	الثاني
$\lambda 3 = \frac{4L}{5}$	$\lambda 3 = \frac{2L}{3}$	الثاثث

DON'T GIVE UP

كن عالي الهمة ولا ترضى بغير القمة